Share This Article:

Heavy-Metal Tolerance and Antibiotic Susceptibility of Red Pigmented Bacteria Isolated from Marine Environment

Abstract Full-Text HTML Download Download as PDF (Size:298KB) PP. 171-174
DOI: 10.4236/nr.2012.34022    3,701 Downloads   7,318 Views   Citations

ABSTRACT

This study was undertaken to determine heavy metal resistance and antibiotic susceptibility of three non-pathogenic red pigmented bacteria namely WPRA3, SM11-3j and SC-G18, isolated from marine environments of Malaysia. The bacteria isolates were identified by 16S rRNA sequencing and by biochemical and morphological tests. The 16S rRNA gene sequences of all isolates showed ≥96% similarity to Serratia spp. Antibiotic susceptibility test of isolates was assayed according to the Kirby-Bauer disc diffusion method. All isolates were highly resistant to beta-lactam antibiotics, but were susceptible to quinolone antibiotics. Minimum inhibitory concentration (MIC) of nine heavy metals (Ni2+, Co2+, Cr3+, Zn2+, Mn2+, Pb2+, Hg2+, Cd2+ and Cu2+) against the bacteria isolates were determined via the plate-dilution method. The isolates exhibited resistance to Ni2+, Co2+, Cr3+ and Zn2+. Isolates WPRA3 and SM11-3j showed higher multiple tolerances to heavy metals. The results obtained indicate that bacteria from marine environments of Malaysia present interesting metabolic activities, which should be studied and explored for potential biotechnological applications.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Jafarzade, S. Mohamad, G. Usup and A. Ahmad, "Heavy-Metal Tolerance and Antibiotic Susceptibility of Red Pigmented Bacteria Isolated from Marine Environment," Natural Resources, Vol. 3 No. 4, 2012, pp. 171-174. doi: 10.4236/nr.2012.34022.

References

[1] F. Grimont and P. A. D. Grimont, “The Genus Serratia,” Prokaryotes, Vol. 6, 2006, pp. 219-244. doi:10.1007/0-387-30746-X_11
[2] I. Chopra and M. Roberts, “Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance,” Microbiology and Molecular Biology Reviews, Vol. 65, No. 2, 2001, pp. 232- 260. doi:10.1128/MMBR.65.2.232-260.2001
[3] E. B. Winshell and H. C. Neu, “Relation of Cell Wall Lipid Content of Serratia marcescens to Resistance to Antimicrobial Agents,” Antimicrobial Agents and Chemotherapy, Vol. 6, No. 1, 1974, pp. 73-75. doi:10.1128/AAC.6.1.73
[4] C. L. Mitchelmore, E. A. Verde, A. H. Ringwood and V. M. Weis, “Differential Accumulation of Heavy Metals in the Sea Anemone Anthopleura elegantissima as a Function of Symbiotic State,” Aquatic Toxicology, Vol. 64, No. 3, 2003, pp. 317-329. doi:10.1016/S0166-445X(03)00055-9
[5] M. H. Al-Yousuf, El-Shahawi and S. M. Al-Chais, “Trace Metals in Liver, Skin and Muscle of Lethrinus lentjan Fish Species in Relation to Body Length and Sex,” Science of the Total Environment, Vol. 256, No. 2-3, 2000, pp. 87-94. doi:10.1016/S0048-9697(99)00363-0
[6] R. C. Weast, “CRC Handbook of Chemistry and Physics 1983-1984,” 64th Edition, CRC, Boca Raton, 1983.
[7] D. H. Nies, “Microbial Heavy-Metal Resistance,” Applied Microbiology and Biotechnology, Vol. 51, No. 6, 1999, pp. 730-750. doi:10.1007/s002530051457
[8] A. W. Bauer, W. M. M. Kirby, J. C. Sherris and M. Turck, “Antibiotic Susceptibility Testing by a Standardized Single Disk Method,” The American Journal of Clinical Pathology, Vol. 45, No. 4, 1966, pp. 493-496.
[9] A. Malik and R. Jaiswal, “Metal Resistance in Pseudomonas Strains Isolated from Soil Treated with Industrial Wastewater,” World Journal of Microbiology and Biotechnology, Vol. 16, No. 2, 2000, pp. 177-182. doi:10.1023/A:1008905902282
[10] B. Ajithkumar, V. P. Ajithkumar, R. Iriye, Y. Doi and T. Sakai, “Spore-Forming Serratia marcescens subsp. sakuensis subsp. nov., Isolated from a Domestic Wastewater Treatment Tank,” International Journal of Systematic and Evolutionary Microbiology, Vol. 53, No. 1, 2003, pp. 253- 258. doi:10.1099/ijs.0.02158-0
[11] C. X. Zhang, S. Y. Yang, M. X. Xu, J. Sun, H. Liu, J. R. Liu, H. Liu, F. Kan, J. Sun, R. Lai and K. Y. Zhang, “ Serratia nematodiphila sp. nov., Associated Symbiotically with the Entomopathogenic Nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae),” International Journal of Systematic and Evolutionary Microbiology, Vol. 59, Pt. 7, 2009, pp. 1603-1608.
[12] G. L. Button, M. A. Miller and J. C. Tsang, “Antibiogram and Lipid Analysis of a Pigmented Strain of Serratia marcescens and Its Nonpigmented Variants ANTrmcROBnL,” Antimicrobial Agents and Chemotherapy, Vol. 7, No. 2, 1975, pp. 219-222. doi:10.1128/AAC.7.2.219
[13] M. J. Ding and S. J. Sung, “Drug Resistance, R Plasmids and Pigmentation of Serratia marcescens Isolated in Taiwan,” Chinese Journal of Microbiology and Immunology, Vol. 20, No. 1, 1987, pp. 69-79.
[14] S. Y. Koo and K. S. Cho, “Characterization of Serratia sp. K1RP-49 for Application to the Rhizoremediation of Heavy Metals,” Survival and Sustainability, 2011, pp. 3-13. doi:10.1007/978-3-540-95991-5_1
[15] J. Marrero, G. Auling, O. Coto and D. H. Nies, “High-Level Resistance to Cobalt and Nickel but Probably No Transenvelope Efflux: Metal Resistance in the Cuban Serratia marcescens Strain C-1,” Microbial Ecology, Vol. 53, No. 1, 2007, pp. 123-133. doi:10.1007/s00248-006-9152-7
[16] D. Cruz-Vega, E. Cervantes-González, D. Ammons, L. I. Rojas-Avellzapa, J. García-Mena, R. C. Pless and N. G. Rojasavelizapa, “Tolerance and Removal of Metals by Microorganisms Isolated from a Pitch Lake,” Haz Waste Management: B1.1, 2008.
[17] S. M. Yunus, H. M. Hamim, O. M. Anas, S. N. Aripin and S. M. Arif, “Mo (VI) Reduction to Molybdenum Blue by Serratia marcescens Strain Dr.Y9,” Polish Journal of Microbiology, Vol. 58, No. 2, 2009, pp. 141-147.
[18] M. Y. Shukor, S. H. Habib, M. F. Rahman, H. Jirangon, M. P. Abdullah, N. A. Shamaan and M. A. Syed, “Hexavalent Molybdenum Reduction to Molybdenum Blue by S. marcescens Strain Dr. Y6,” Applied Biochemistry and Biotechnology, Vol. 149, No. 1, 2008, pp. 33-43. doi:10.1007/s12010-008-8137-z
[19] V. L. Campos, R. Moraqa, J. Yánez, C. A. Zaror and M. A. Mondaca, “Chromate Reduction by Serratia marcescens Isolated from Tannery Effluent,” Bulletin of Environmental Contamination and Toxicology, Vol. 75, No. 2, 2005, pp. 400-406. doi:10.1007/s00128-005-0767-z

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.