Share This Article:

Green Oil Production by Hydroprocessing

Abstract Full-Text HTML XML Download Download as PDF (Size:479KB) PP. 43-55
DOI: 10.4236/ijcce.2012.14005    9,304 Downloads   19,796 Views   Citations
Author(s)    Leave a comment


Owning to GHG emissions control and prospective future of biofuel, it is encouraged to look for a shift to alternate industrial feedstock and green processes to produce these chemicals from renewable biomass resources. Besides hydrotreating bio-oil or crop oil to produce second generation bio-fuels, the bio-oil can be co-processed in various refining units and it also may lead to the production of green diesel, which is not only an opportunity but also a challenge for petroleum industry. Green oil or green diesel can be produced by co-processing renewable diesel with petroleum oil in present hydroprocressing unit. Many researches and works have been done on co-processing process and related catalyst in the hope of figuring out the mechanism and optimizing the co-processing technology with adding amounts vegetable oils or animal fats to the traditional petroleum refining process to produce green oil. This is a literature review about green oil production by hydroprocessing and co-processing.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Chen, "Green Oil Production by Hydroprocessing," International Journal of Clean Coal and Energy, Vol. 1 No. 4, 2012, pp. 43-55. doi: 10.4236/ijcce.2012.14005.


[1] B. Kamm, P. R. Gruber and M. Kamm, “Biorefinery Industrial Processes and Products: Status and Future Direction,” Vol. 1-2, Wiley-Verlay Gmbtt and Co. KGaA, Weinheim, 2006.
[2] C. V. Stevens and R. Verhe, “Renewable Bioresources Scope and Modification for Non-Food Application,” John Wiley and Sons Ltd., England, 2004.
[3] D. Puppan, “Environmental Evaluation of Biofuels,” Period Polytechnica, Vol. 10, No. 1, 2002, pp. 95-116.
[4] K. S. Tyson, “Biodiesel Handling and Use Guidelines,” National Renewable Energy Laboratory, Golden, 2001, p. 22. doi:10.2172/787982
[5] J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan- Jimenez and M. Crocker; “Biodiesel Production from Soybean Oil Using Calcined Li-Al Layered Double Hydroxide Catalysts,” Catalysis Letters, Vol. 115, No. 1-2, 2007, pp. 56-61. doi:10.1007/s10562-007-9071-3
[6] J. Holmgren, “Biofuels: Unlocking the Potential,” ERTC 12th Annual Meeting, Barcelona, 19-21 November, 2007.
[7] N. Eisberg, “Harvesting Energy,” Chemical Industries, No. 17, 2006, pp. 24-25.
[8] European Commission (EC), “Promoting Biofuels in Europe,” Directorate-General for Energy and Transport, Bruxelles, 2004, B-1049.
[9] Meet Clean Diesel, “Renewable Diesel Fuels”.
[10] G. Knothe, “Biodiesel and Renewable Diesel: A Comparison,” Progress in Energy and Combustion Science, Vol. 36, No. 3, 2010, pp. 364-373. doi:10.1016/j.pecs.2009.11.004
[11] A. Centeno, E. Laurent and B. Delmon, “Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxylic and Guaiacol-Type Molecules,” Journal of Catalysis, Vol. 154, No. 2, 1995, pp. 288-298.
[12] O. i. Senol, T.-R. Viljava and A. O. I. Krause, “Hydrodeoxygenation of Aliphatic Esters on Sulphided NiMO/γ-Al2O3 and CoMo/γ-Al2O3 Catalyst: The Effect of Water,” Catalysis Today, Vol. 106, No. 1-4, 2005, pp. 186-189. doi:10.1016/j.cattod.2005.07.129
[13] O. i. Senol, E.-M. Ryymin, T.-R. Viljava and A. O. I. Krause, “Reactions of Methyl Heptanoate Hydrodeoxygenation on Sulphided Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 268, No. 1-2, 2007, pp. 1-8. doi:10.1016/j.molcata.2006.12.006
[14] O. i. Senol, E.-M. Ryymin, T.-R. Viljava and A. O. I. Krause, “Effect of Hydrogen Sulphide on the Hydrodeoxygenation of Aromatic and Aliphatic Oxygenates on Sulphided Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 277, No. 1-2, 2007, pp. 107-112. doi:10.1016/j.molcata.2007.07.033
[15] S. Bezergianni, A. Kalogianni and I. A. Vasalos, “Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production,” Bioresource Technology, Vol. 100, No. 12, 2009, pp. 3036-3042. doi:10.1016/j.biortech.2009.01.018
[16] M. Ferrari, S. Bosmans, R. Maggi, B. Delmon and P. Grange, “CoMo/Carbon Hydrodeoxygenation Catalysts: Influence of the Hydrogen Sulfide Partial Pressure and of the Sulfidation Temperature,” Catalysis Today, Vol. 65, No. 2-4, 2001, pp. 257-264. doi:10.1016/S0920-5861(00)00559-9
[17] M. Ferrari, R. Maggi, B. Delmon and P. Grange, “Influences of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst,” Journal of Catalysis, Vol. 198, No. 1, 2001, pp. 47-55. doi:10.1006/jcat.2000.3103
[18] G. de la Puente, A. Gil, J. J. Pis and P. Grange, “Effects of Support Surface Chemistry in Hydrodeoxygenation Reactions over CoMo/Activated Carbon Sulfided Catalysts,” Langmuir, Vol. 15, No. 18, 1999, pp. 5800-5806. doi:10.1021/la981225e
[19] J. Gusmaao, D. Brodzki, G. Djéga-Mariadassou and R. Frety, “Utilization of Vegetable Oils as an Alternative Source for Dieseltype Fuel: Hydrocracking on Educed Ni/SiO2 and Sulfided Ni-Mo/γ-Al2O3,” Catalysis Today, Vol. 5. No. 4, 1989, pp. 533-544. doi:10.1016/0920-5861(89)80017-3
[20] W. F. Maier, W. Roth, I. Thies and P. V. Ragué Schleyer, “Hydrogenolysis, IV. Gas Phase Decarboxylation of Carboxylic Acids,” Chemische Berichte, Vol. 115, No. 2, 1982, pp. 808-812. doi:10.1002/cber.19821150245
[21] P. Maki-Arvela, I. Kubickova, M. Snare, K. Eranen and D. Y. Murzin, “Catalytic Deoxygenation of Fatty Acids and Their Derivatives,” Energy and Fuels, Vol. 21, No. 1, 2007, pp. 30-41. doi:10.1021/ef060455v
[22] M. Snare, I. Kubickova, P. Maki-Arvela, D. Chichova, K. Eranen and D. Y. Murzin, “Catalytic Deoxygenation of Unsaturated Renewable Feedstocks for Roduction of Diesel Fuel Hydrocarbons,” Fuel, Vol. 87, No. 6, 2008, pp. 933-945. doi:10.1016/j.fuel.2007.06.006
[23] P. P. Nunes, D. Brodzki, G. Bugli, G. Djega-Mariadassou, “Soybean Oil Hydrocracking under Pressure: Process and General Aspect of the Transformation,” Revue De L Institut Francais Du Petrol, Vol. 41, No. 3, 1986, pp. 421-431.
[24] M. E. Halttunena, M. K. Niemelaa, A. O. I. Krausea and A. I. Vuori, “Rh/C Catalysts for Methanol Hydrocarbonylation. II. Activity in the Presence of MeI,” Applied Catalysis A: General, Vol. 182, No. 1, 1999, pp. 115-123. doi:10.1016/S0926-860X(98)00361-5
[25] M. Snare, I. Kubicková, P. Maki-Arvela, K. Eranen, J. Warna, D. Y. Murzin, “Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel,” Industrial & Engineering Chemistry Research, Vol. 45, No. 16, 2006, pp. 5708-5715. doi:10.1021/ie060334i
[26] G. W. Huber and A. Corma, “Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass,” Angewandte Chemie International Edition, Vol. 46, No. 38, 2007, pp. 7184-7201.
[27] L. Reijnders, “Conditions for the Sustainability of Biomass Based Fuel Use,” Energy Policy, Vol. 34, No. 7, 2006, pp. 863-876. doi:10.1016/j.enpol.2004.09.001
[28] L. C. Meher, D. V. Sagar and S. N. Naik, “Technical Aspects of Biodiesel Production by Transesterification— A Review,” Renewable and Sustainable Energy Reviews, Vol. 10, No. 3, 2006, pp. 248-268. doi:10.1016/j.rser.2004.09.002
[29] C. Difiglio, “Using Advanced Technologies to Reduce Motor Vehicle Greenhouse Gas Emissions,” Energy Policy, Vol. 25, No. 14-15, 1997, pp. 1173-1178. doi:10.1016/S0301-4215(97)00109-2
[30] J. H. Marsman, J. Wildschut, F. Mahfud and H. J. Heeres, “Identification of Components in Fast Pyrolysis Oil and Upgraded Products by Comprehensive Two-Dimensional Gas Chromatography and Flame Ionisation Detection,” Journal of Chromatography A, Vol. 1150, No. 1-2, 2007, pp. 21-27. doi:10.1016/j.chroma.2006.11.047
[31] J. H. Marsman, J. Wildschut, P. Evers, S. de Koning and H. J. Heeres, “Identification and Classification of Components in Flash Pyrolysis Oil and Hydrodeoxygenated Oils by Two-Dimensional Gas Chromatography and Time- of-Flight Mass Spectrometry,” Journal of Chromatography A, Vol. 1188, No. 1, 2008, pp. 17-25. doi:10.1016/j.chroma.2008.02.034
[32] A. Oasmaa and S. Czernik, “Fuel Oil Quality of Biomass Pyrolysis Oils-State of the Art for the End-Users,” Energy and Fuels, Vol. 13, No. 4, 1999, pp. 914-921. doi:10.1021/ef980272b
[33] F. de Miguel Mercader, M. J. Groeneveld, S. R. A. Kersten, N. W. J. Way, C. J. Schaverien and J. A. Hogendoorn, “Production of Advanced Biofuels: Co-Processing of Upgraded Pyrolysis Oil in Standard Refinery Units,” Applied Catalysis B: Environmental, Vol. 96, No. 1-2, 2010, pp. 57-66. doi:10.1016/j.apcatb.2010.01.033
[34] J. D. Rocha, C. A. Luengo and C. E. Snape, “Hydro- dexygenation of Oils from Ceelulose in Single and Two- Stage Hydripyrolysis,” Renewable Energy, Vol. 9, No. 1-4, 1996, pp. 950-953. doi:10.1016/0960-1481(96)88437-0
[35] P. Grange, E. Laurent, R. Maggi, A. Centeno and B. Delmon, “Hydrotreatment of Pyrolysis Oils from Biomass: Reactivity of the Various Categories of Oxygenated Com- pounds and Preliminary Techno-Economical study,” Catalysis Today, Vol. 29, No. 1-4, 1996, pp. 297-301. doi:10.1016/0920-5861(95)00295-2
[36] S. P. Zhang, Y. Yongjie, T. Li, et al. “Upgrading of Liquid Fuel from the Pyrolysis of Biomass,” Bioresource Technology, Vol. 96, No. 5, 2005, pp. 545-550. doi:10.1016/j.biortech.2004.06.015
[37] Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, “Upgrading of Liquid Fuel from the Vacuum Pyrolysis of Biomass over the Mo-Ni/γ-Al2O3 Catalysts,” Biomass and Bioenergy, Vol. 33, No. 8, 2009, pp. 1030-1036. doi:10.1016/j.biombioe.2009.03.002
[38] Y. Xu, T. Wang, L. Ma, Q. Zhang and W. Liang, “Upgrading of the Liquid Fuel from Fast Pyrolysis of Biomass over MoNi/γ-Al2O3 Catalysts,” Applied Energy, Vol. 87, No. 9, 2010, pp. 2886-2891. doi:10.1016/j.apenergy.2009.10.028
[39] J. Wildschut, I. Melián-Cabrera and H. J. Heeres, “Catalyst Studies on the Hydrotreatment of Fast Pyrolysis Oil,” Applied Catalysis B: Environmental, Vol. 99, No. 1-2, 2010, pp. 298-306. doi:10.1016/j.apcatb.2010.06.036
[40] M. Stumborg, A. Wong and E. Hogan, “Hydroprocessed Vegetable Oils for Diesel Fuel Improvements,” Bioresource Technology, Vol. 56, No. 1, 1996, pp. 13-18. doi:10.1016/0960-8524(95)00181-6
[41] L. Avaullée, P. Duchet-Suchaux, M. Durandeu and J. N. Jaubert, “A New Approach in Correlating the Oil Thermodynamic Properties,” Journal of Petroleum Science and Engineering, Vol. 30, No. 1, 2001, pp. 43-65. doi:10.1016/S0920-4105(01)00100-0
[42] C. Fragale, M. Gargano, N. Ravasio, M. Rossi and I. Santo, “Catalytic Hydrogenation of Vegetable Oils: III. A Comparison of Reactivity and Selectivity between Cyclic Polyenes and Polyunsaturated Fatty Acids with Copper Chromite as Catalyst,” Inorganica Chimica Acta, Vol. 82, No. 2, 1984, pp. 157-160. doi:10.1016/S0020-1693(00)82486-X
[43] J. S. Milano-Brusco and R. Schomacker, “Catalytic Hydrogenations in Microemulsion Systems with Rh-TPPTS: Partial Hydrogenation of Sunflower Oil,” Catalysis Letters, Vol. 133, No. 3-4, 2009, pp. 273-279. doi:10.1007/s10562-009-0187-5
[44] Ullmann, “Ullmann’s Encyclopedia of Industrial Chemistry,” Vol. 13, Wiley-VCH Verlag GmbH & Co., Weinheim, 2003.
[45] R. C. Christiansen, “Neste Oil Building Singapore Renewable Diesel Plant,” Biodiesel Magazine, March 2009.
[46] Schill, S.R. JAL flight to test camelina-jatropha-algae fuel. Biodiesel Magazine, January 2008.
[47] J. L. Harwood and F. D. Gunstone, “Occurrence and characterisation of oils and fats,” In: F. D. Gunstone, J. L. Harwood and J. L. Dijkstra, Eds., The Lipid Handbook, CRC Press, Boca Raton, 2007, pp. 37-141.
[48] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M, Posewitz, M. Seibert, et al., “Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Erspectives and Advances,” The Plant Journal, Vol. 54, No. 4, 2008, pp. 621-639. doi:10.1111/j.1365-313X.2008.03492.x
[49] A. Austin, “Boeing Planes Successfully Fly with Biofuels,” Biodiesel Magazine, January 2009.
[50] J. L. Guil-Guerrero, F. Gómez-Mercado, F. García-Marotoc and P. Campra-Madrida, “Occurrence and Characterization of Oils Rich in γ-Linolenic Acid: Part I: Echium Seeds from Macaronesia,” Phytochemistry, Vol. 53, No. 4, 2000, pp. 451-456. doi:10.1016/S0031-9422(99)00549-X
[51] D. Kubicka, J. Chudoba, P. Simacek, “Europacat VIII,” Turku, 26-31 August 2007.
[52] N. Zeman, “Neste Oil Starts Construction on Europe’s Largest Renewable Fuels Plant,” Biodiesel Magazine, May 2009.
[53] M. Izadifar and M. Z. Jahromi, “Application of Genetic Algorithm for Optimization of Vegetable Oil Hydrogenation Process,” Journal of Food Engineering, Vol. 78, No. 1, 2007, pp. 1-8. doi:10.1016/j.jfoodeng.2005.08.044
[54] G. N. da Rocha Filho, D. Brodzki and G. Djéga-Mariadassou “Formation of Alkanes, Alkylcycloalkanes and Alkylbenzenes during the Catalytic Hydrocracking of Ve- getable Oils,” Fuel, Vol. 72, No. 4, 1993, pp. 543-549. doi:10.1016/0016-2361(93)90114-H
[55] D. Kubicka and L. Kaluza, “Deoxygenation of Vegetable Oils over Sulfided Ni, Mo and NiMo Catalysts,” Applied Catalysis A: General, Vol. 372, No. 2, 2010, pp. 199-208. doi:10.1016/j.apcata.2009.10.034
[56] P. Simácek, D. Kubicka, G. Sebor and M. Pospísil, “Fuel Properties of Hydroprocessed Rapeseed Oil,” Fuel, Vol. 89, No. 3, 2010, pp. 611-615. doi:10.1016/j.fuel.2009.09.017
[57] P. Simácek, D. Kubicka, G. Sebor and M. Pospísil, “Hydroprocessed Rapeseed Oil as a Source of Hydrocarbon-Based Biodiesel,” Fuel, Vol. 88, No. 3, 2009, pp. 456-460. doi:10.1016/j.fuel.2008.10.022
[58] P. Simacek and D. Kubick, “Hydrocracking of Petroleum Vacuum Distillate Containing Rapeseed Oil: Evaluation of Diesel Fuel,” Fuel, Vol. 89, No. 7, 2010, pp. 1508-1513. doi:10.1016/j.fuel.2009.09.029
[59] K. C. Kwon, H. Mayfield, T. Marolla, B. Nichols and M. Mashburn, “Catalytic Deoxygenation of Liquid Biomass for Hydrocarbon Fuels,” Renewable Energy, Vol. 36, No. 3, 2011, pp. 907-915. doi:10.1016/j.renene.2010.09.004
[60] J. Monniera, H. Sulimmab, A. Dalaib and G. Caravaggio, “Hydrodeoxygenation of Oleic Acid and Canola Oil over Alumina-Supported Metal Nitrides,” Applied Catalysis A: General, Vol. 382, No. 2, 2010, pp. 176-180. doi:10.1016/j.apcata.2010.04.035
[61] O. V. Kikhtyanin, A. E. Rubanov, A. B. Ayupov and G. V. Echevsky, “Hydroconversion of Sunflower Oil on Pd/SAPO-31 Catalyst,” Fuel, Vol. 89, No. 10, 2010, pp. 3085-3092. doi:10.1016/j.fuel.2010.05.033
[62] J. Hancsók, M. Krár, S. Magyar, L. Boda, A. Holló and D. Kalló, “Investigation of the Production of High Cetane Number Bio Gas Oil from Pre-Hydrogenated Vegetable Oils over Pt/HZSM-22/Al2O3,” Microporous and Mesoporous Materials, Vol. 101, No. 1-2, 2007, pp. 148-152. doi:10.1016/j.micromeso.2006.12.012
[63] A. Guzman, J. E. Torres, L. P. Prada and M. L. Nunez, “Hydroprocessing of Crude Palm Oil at Pilot Plant Scale,” Catalysis Today, Vol. 156, No. 1-2, 2010, pp. 38-43. doi:10.1016/j.cattod.2009.11.015
[64] D. Kubicka and J. Horácek, “Deactivation of HDS Catalysts in Deoxygenation of Vegetable Oils,” Applied Catalysis A: General, Vol. 394, No. 1-2, 2010, pp. 9-17.
[65] E. Furimsky, “Chemistry of Catalytic Hydrogenation,” Catalysis Reviews: Science and Engineering, Vol. 25, No. 3, 1983, pp. 421-458. doi:10.1080/01614948308078052
[66] E. Dorrestijn and P. Mulder, “The Radical-Induced Decomposition of 2-Methoxyphenol,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, 1999, 777-780. doi:10.1039/a809619h
[67] G. N. da Rocha Filho, D. Brodzki and G. Djéga-Mariadassou, “Formation of Alkanes, Alkylcycloalkanes and Alkylbenzenes during the Catalytic Hydrocracking of Vegetable Oils,” Fuel, Vol. 72, No. 4, 1993, pp. 543-549. doi:10.1016/0016-2361(93)90114-H
[68] S. Echeandia, P. L. Arias, V. L. Barrio, B. Pawelec and J. L. G. Fierro, “Synergy Effect in the HDO of Phenol Over Ni-W Catalysts Supported on Active Carbon: Effect of Tungsten Precursors,” Applied Catalysis B: Environmental, Vol. 101, No. 1-2, 2010, pp. 1-12. doi:10.1016/j.apcatb.2010.08.018
[69] L. Boda, G. Onyestyák, H. Solt, F. Lónyi, J. Valyon and A. Thernesz, “Catalytic Hydroconversion of Tricaprylin and Caprylic Acid as Model Reaction for Biofuel Production from Triglycerides,” Applied Catalysis A: General, Vol. 374, No. 1-2, 2012, pp. 158-169. doi:10.1016/j.apcata.2009.12.005
[70] I. Kubicková, M. Snare, K. Eranen, P. Maki-Arvela and D.Y. Murzin, “Hydrocarbons for Diesel Fuel via Decarboxylation of Vegetable Oils,” Catalysis Today, Vol. 106, No. 1-4, 2005, pp. 197-200. doi:10.1016/j.cattod.2005.07.188
[71] Q. Smejkala, L. Smejkalováa and D. Kubickab, “Thermodynamic Balance in Reaction System of Total Vegetable Oil Hydrogenation,” Chemical Engineering Journal, Vol. 146, No. 1, 2009, pp. 155-160.
[72] S. Vitu, R. Privat, J. N. Jaubert and F. Mutelet, “Predicting the Phase Equilibria of CO2 + Hydrocarbon Systems with the PPR78 Model (PR EOS and kij Calculated through a Group Contribution Method),” The Journal of Supercritical Fluids, Vol. 45, No. 1, 2008, pp. 1-26. doi:10.1016/j.supflu.2007.11.015
[73] K. G. Joback, “A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques,” Master’s Thesis, MIT, Cambridge, 1984.
[74] Q. Smejkala, L. Smejkalová and D. Kubicka, “Thermodynamic Balance in Reaction System of Total Vegetable Oil Hydrogenation,” Chemical Engineering Journal, Vol. 146, No. 1, 2009, pp. 155-160.
[75] E. Laurent and B. Delmon. “Study of the Hydrodeoxygenation of Carbonyl, Carboxylic and Guaiacyl Groups over Sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 Catalysts: II. Influence of Water, Ammonia and Hydrogen Sulfide,” Applied Catalysis A: General, Vol. 109, No. 1, 1994, pp. 97-115. doi:10.1016/0926-860X(94)85005-4
[76] O. I. Senol, T.-R. Viljava and A. O. I. Krause, “Effect of Sulphiding Agents on the Hydrodeoxygenation of Aliphatic Esters on Sulphided Catalysts,” Applied Catalysis A: General, Vol. 326, No. 2, 2007, pp. 236-244.
[77] V. N. Bui, G. Toussaint, D. Laurenti, C. Mirodatos and C. Geantet, “Co-Processing of Pyrolisis Bio Oils and Gas Oil for New Generation of Bio-Fuels: Hydrodeoxygenation of Guaiacol and SRGO Mixed Feed,” Catalysis Today, Vol. 143, No. 1-2, 2009, pp. 172-178. doi:10.1016/j.cattod.2008.11.024
[78] O. I. Senol, T.-R. Viljava and A. O. I. Krausede, “Hydrodeoxygenation of Methyl Esters on Sulphided NiMO/γ- Al2O3 and CoMo/γ-Al2O3 catalysts,” Catalysis Today, Vol. 100, No. 3-4, 2005, pp. 331-335. doi:10.1016/j.cattod.2004.10.021
[79] I. Sebos, A. Matsoukas, V. Apostolopoulos and N. Papayannakos, “Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable Diesel,” Fuel, Vol. 88, No. 3, 2009, pp. 145-149. doi:10.1016/j.fuel.2008.07.032
[80] J. Walendziewski, M. Stolarski, R. Luzny and B. Klimek, “Hydroprocesssing of Light Gas Oil—Rape Oil Mixtures,” Fuel Processing Technology, Vol. 90, No. 5, 2009, pp. 686-691. doi:10.1016/j.fuproc.2008.12.006
[81] G. W. Huber, P. OConnor and A. Corma, “Processing Biomass in Conventional Oil Refineries: Production of High Quality Diesel by Hydrotreating Vegetable Oils in Heavy Vacuum Oil Mixtures,” Applied Catalysis A: General, Vol. 329, No. 1, 2007, pp. 120-129. doi:10.1016/j.apcata.2007.07.002
[82] A. A. L. Lappas, S. Bezergianni and I. A. Vasalos, “Production of Biofuels via Co-Processing in Conventional Refining Processes,” Catalysis Today, Vol. 145, No. 1-2, 2009, pp. 55-62. doi:10.1016/j.cattod.2008.07.001

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.