A chemical ecological investigation of the allelopathic potential of Lamium amplexicaule and Lamium purpureum

Abstract

The overall goal of the project was to test the hypothesis that Lamium amplexicaule and Lamium purpureum, weedy invasive species to North America, use phytotoxic allelochemicals in interplant competition. The chemical compositions of the essential oils from the aerial parts of L. amplexicaule and L. purpureum have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The essential oils and several essential oil components have been screened for phytotoxic activity on lettuce (Lactuca sativa) and perennial ryegrass (Lolium perenne) as well as nematocidal activity against Caenorhabditis elegans, brine shrimp (Artemia salina) lethality, and insecticidal activity against the red imported fire ant (Solenopsis invicta × richteri). L. amplexicaule essential oil was composed largely of α-pinene, β- pinene, 1-octen-3-ol, (E)-caryophyllene, and germacrene D, while L. purpureum oil was dominated by α-pinene, β-pinene, 1-octen-3-ol, β-elemene, and germacrene D. Neither essential oil exhibited notable phytotoxicity or lethality against nema-todes, brine shrimp, or fire ants. It is unlikely, therefore, that the allelopathy observed in these Lamium species is due to volatile phytochemical constituents.

Share and Cite:

Jones, C. , Woods, K. and Setzer, W. (2012) A chemical ecological investigation of the allelopathic potential of Lamium amplexicaule and Lamium purpureum. Open Journal of Ecology, 2, 167-177. doi: 10.4236/oje.2012.24020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Radford, A.E., Ahles, H.E. and Bell, C.R. (1968) Manual of the Vascular Flora of the Carolinas. University of North Carolina Press, Chapel Hill.
[2] Pimentel, D., Lach, L., Zuniga, R. and Morrison, D. (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience, 50, 53-65. doi:10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
[3] Olliff, T., Renkin, R., McClure, C., Miller, P., Price, D., Reinhard, D. and Whipple, J. (2001) Managing a complex exotic vegetation program in Yellowstone National Park. Western North American Naturalist, 61, 347-358. https://ojs.lib.byu.edu/ojs/index.php/wnan/article/viewArticle/1012
[4] Conley, S.P. and Bradley, K.W. (2005) Wheat (Triticum aestivum) yield response to henbit (Lamium amplexicaule) interference and simulated winterkill. Weed Technology, 19, 902-906. doi:10.1614/WT-04-252R.1
[5] Mock, V.A., Creech, E., Davis, V.M. and Johnson, W.G. (2009) Plant growth and soybean cyst nematode response to purple deadnettle (Lamium purpureum), annual ryegrass, and soybean combinations. Weed Science, 57, 489- 493. doi:10.1614/WS-09-005.1
[6] Adams, R.P. (2007) Identification of essential oil com- ponents by gas chromatography/mass spectrometry. 4th Edition Allured Publishing Corp., Carol Stream.
[7] Kennedy, J.E., Davé, P.C., Harbin, L.N. and Setzer, W.N. (2011) Allelopathic potential of Sassafras albidum and Pinus taeda essential oils. Allelopathy Journal, 27, 111-122. http://indianjournals.com/ijor.aspx?target=ijor:aj&volume=27&issue=1&article=011
[8] McLaughlin, J.L. (1991) Bench-top bioassays for the discovery of bioactive compounds in higher plants. Brenesia, 34, 1-14.
[9] Park, I.K., Kim, J., Lee, S.G. and Shin, S.C. (2007) Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). Journal of Nematology, 39, 257-279. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586506/
[10] Chen, L., Lu, Y.Y., Hu, Q.B. and Fadamiro, H.Y. (2012) Similarity in venom alkaloid chemistry of alate queens of imported fire ants: Implication for hybridization between Solenopsis richteri and S. invicta in the southern United States. Chemistry & Biodiversity, 9, 702-713. doi:10.1002/cbdv.201100109
[11] Zar, J.H. (1996) Biostatistical analysis. 3rd Edition, Prentice Hall, New Jersey.
[12] Reed, L.J. and Muench, H. (1938) A simple method of estimating fifty per cent endpoints. American Journal of Hygiene, 27, 493-497.
[13] Glamini, G., Cioni, P.L. and Morelli, I. (2005) Composi- tion of the essential oils and in vivo emission of volatiles of four Lamium species from Italy: L. purpureum, L. hybridum, L. bifidum, and L. amplexicaule. Food Chemistry, 91, 63-68. doi:10.1016/j.foodchem.2004.05.047
[14] Fujii, Y., Shibuya, T. and Yasuda, T. (1992) Allelopathy of velvetbean: Its discrimination and identification of L-DOPA as a candidate of allelopathic substances. Japan Agricultural Research Quarterly, 25, 238-247.
[15] Shiraishi, S., Watanabe, I., Kuno, K. and Fujii, Y. (2002) Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar. Weed Biology and Management, 2, 133-142. doi:10.1046/j.1445-6664.2002.00063.x
[16] Pérez, F.J. and Orme?o-Nú?ez, J. (1993) Weed growth interference from temperate cereals: The effect of hydroxamic-acids-exuding rye (Secale cereale L.) cultivar. Weed Research, 33, 115-119. doi:10.1111/j.1365-3180.1993.tb01924.x
[17] Tesio, F., Vidotto, F. and Ferrero, A. (2012) Allelopathic persistence of Helianthus tuberosus L. residues in the soil. Scientia Horticulturae, 125, 98-105. doi:10.1016/j.scienta.2011.12.008
[18] Creech, J.E., Faghihi, J., Ferris, V.R., Westphal, A., and Johnson, W.G. (2007) Influence of intraspecific henbit (Lamium amplexicaule) and purple deadnettle (Lamium purpureum) competition on soybean cyst nematode reproduction. Weed Science, 55, 665-670. doi:10.1614/WS-07-051.1
[19] Creech, J.E., Webb, J.S., Young, B.G., Bond, J.P., Harrison, S.K., Ferris, V.R., Faghihi, J., Westphal, A. and Johnson, W.G. (2007) Development of soybean cyst nematode on henbit (Lamium amplexicaule) and purple deadnettle (Lamium purpureum). Weed Technology, 21, 1064-1070. doi:10.1614/WT-07-079.1
[20] Marshall, E.J.P., Brown, V.K., Boatman, N.D., Lutman, P.J.W., Squire, G.R. and Ward, L.K. (2003) The role of weeds in supporting biological diversity within crop fields. Weed Research, 43, 77-89. doi:10.1046/j.1365-3180.2003.00326.x
[21] Esquivel, J.F. and Mowery, S.V. (2007) Host plants of the tarnished plant bug (Heteroptera: Miridae) in central Texas. Environmental Entomology, 36, 725-730. doi:10.1603/0046-225X(2007)36[725:HPOTTP]2.0.CO;2
[22] Atakan, E. (2010) Influence of weedy field margins on abundance patterns of the predatory bugs Orius spp. and their prey, the western flower thrips (Frankliniella occi- dentalis), on faba bean. Phytoparasitica, 38, 313-325. doi:10.1007/s12600-010-0105-9
[23] Bayhan, E., Ulusoy, M.R. and Brown, J.K. (2006) Host range, distribution, and natural enemies of Bemisia tabaci “B biotype” (Hemiptera: Aleyrodidae) in Turkey. Journal of Pesticide Science, 79, 233-240. doi:10.1007/s10340-006-0139-4
[24] Wilkinson, T.L. and Douglas, A.E. (2003) Phloem amino acids and the host plant range of the polyphagous aphid, Aphis fabae. Entomologia Experimentalis et Applicata, 106, 103-113. doi:10.1046/j.1570-7458.2003.00014.x
[25] Groves, R.L., Walgenbach, J.F., Moyer, J.W., and Kennedy, G.G. (2002) The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of tomato spotted wilt virus. Plant Disease, 86, 573-582. doi:10.1094/PDIS.2002.86.6.573
[26] Okazaki, S., Okuda, M., Komi, K., Yoshimatsu, H. and Iwanami, T. (2007) Overwintering viruliferous Frankliniella occidentalis (Thysanoptera: Thripidae) as an infection source of tomato spotted wilt virus in green pepper fields. Plant Disease, 91, 842-846. doi:10.1094/PDIS-91-7-0842
[27] Yamasaki, S., Okazaki, S. and Okuda, M. (2012) Tem- poral and spatial dispersal of melon yellow spot virus in cucumber greenhouses and evaluation of weeds as infection sources. European Journal of Plant Pathology, 132, 169-177. doi:10.1007/s10658-011-9860-9
[28] Tomlinson, J.A., Carter, A.L., Dale, W.T. and Simpson, C.J. (1970) Weed plants as sources of cucumber mosaic virus. Annals of Applied Biology, 66, 11-16. doi:10.1111/j.1744-7348.1970.tb04597.x
[29] Kaliciak, A. and Syller, J. (2009) Aphid transmissibility of genetically different isolates of potato virus Y and susceptibility of weeds to virus infection. Biuletyn Instytutu Hodowli i Aklimatyzacji Ro?lin, 253, 285-295. http://www.cabdirect.org/abstracts/20103094750.html
[30] Tomlinson, J.A. and Carter, A.L. (1970) Studies on the seed transmission of cucumber mosaic virus in chickweed (Stellaria media) in relation to the ecology of the virus. Annals of Applied Biology, 66, 381-386. doi:10.1111/j.1744-7348.1970.tb04617.x
[31] Oliveira, M.R.V., Henneberry, T.J. and Anderson, P. (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 20, 709-723. doi:10.1016/S0261-2194(01)00108-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.