Share This Article:

Magnetization of Nano-Size Subsystem in a Two-Dimensional Ising Square Lattice

Abstract Full-Text HTML XML Download Download as PDF (Size:627KB) PP. 175-180
DOI: 10.4236/wjcmp.2012.24029    3,687 Downloads   6,524 Views  

ABSTRACT

A two-dimensional Ising square lattice is modeled as a nano-size block array to study by Monte Carlo simulation the magnetic thermal stability of nano-structure magnetic media for data storage, thereon in the blocks J1 > 0 is assigned for the interaction of a pair of nearest-neighbor spins, while 0 J0 J1 for that in regions between the blocks and (J0 + J1)/2 for the nearest-neighbor pairs with one in the block and the other one out of but near-most the block. We show that the magnetic thermal stability of the block accrues with the increase of J1 and with the decrease of J1 - J0 for a given J1, but contrarily, the anchoring ability for the initial magnetic orientation in nano-size block trails off as J1 - J0 diminish. This phenomena and size dependence of such anchoring ability are discussed in detail.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. He, R. Wang, C. Yin, S. Peng and D. Qian, "Magnetization of Nano-Size Subsystem in a Two-Dimensional Ising Square Lattice," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 175-180. doi: 10.4236/wjcmp.2012.24029.

References

[1] E. Rafal, T. Kasama, A. Wei, S. L. Tripp, M. J. Hytch, E. Snoeck, R. J. Harrison and A. Putnis, “Off-Axis Electron Holography of Magnetic Nanowirse and Chains, Rings, and Planar Arrays of Magnetic Nanoparticles,” Microscopy Research and Technique, Vol. 64, No. 5-6, 2004, pp. 390-402.
[2] D. F. Wang, A. Takahashi, Y. Matsumoto, K. M. Itoh, Y. Yamamoto, T. Ono and M. Esash, “Magnetic Mesa Structures Fabricated Reactive Ion Etching with CO/NH3/Xe Plasma Chemistry for an All-Silicon Quantum Computer,” Nanotechnology, Vol. 16, No. 6, 2005, pp. 990-994. doi:10.1088/0957-4484/16/6/062
[3] R. F. Service, “Is the Terabit Within Reach?” Science, Vol. 314, No. 5807, 2006, pp. 1868-1870. doi:10.1126/science.314.5807.1868
[4] R. Sbiaa and S. N. Piramanayagam, “Patterned Media towards Nano-Bit Magnetic Recording: Fabrication and Challenges,” Recent Patents on Nanotechnology, Vol. 1, No. 1, 2007, pp. 29-40. doi:10.2174/187221007779814754
[5] F. Golmar, M. Villafuerte, A. M. Navarro, C. E. R. Torres, J. Barzola-Quiquia, P. Esquinazi and S. P. Heluani, ZnO:Co Diluted Magnetic Semiconductor or Hybrid Nanostructure for Spintronics,” Journal of Materials Science , Vol. 45, No. 22, 2010, pp. 6174-6178.
[6] Q. Jie, J. Zhou, X. Shi, I. K. Dimitrov and Q. Li, “Strong Impact of Grain Boundaries on the Thermoelectric Properties of Non-Equilibrium Synthesized p-Type Ce1.05Fe4Sb12.04 Filled Skutterudites with Nanostructure,” arXiv: 1006.5715v1, 2010.
[7] G. Choe, B. R. Acharya, K. E. Johnson and K. J. Lee, “Transition and DC Noise Characteristics of Longitudinal Oriented Media,” IEEE Transactions on Magnetics, Vol. 39, No. 5, 2003, pp. 2264-2266. doi:10.1109/TMAG.2003.816266
[8] J. L. García-Palacios and F. J. Lázaro, “Langevin Dynamics Dynamics Study of the Dynamical Properties of Small Magnetic Particles,” Physical Review B, Vol. 58, No. 22, 1998, pp. 14937-14958. doi:10.1103/PhysRevB.58.14937
[9] W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmykov, E. C. Kennedy and W. Wernsdorfer, “Thermally Activated Relaxation Time of a Single Domain Ferromagnetic Particle Subjected to a Uniform Field at an Oblique Angle to the Easy Axis: Comparison with Experimental Observations,” Physical Review Letters, Vol. 80, No. 25, 1998, pp. 5655-5658. doi:10.1103/PhysRevLett.80.5655
[10] D. A. Stariolo and O. V. Billoni, “Dipolar Interactions and Thermal Stability of Two-Dimensional Nanoparticle Arrays,” Journal of Physics D: Applied Physics, Vol. 41, 2008, 7 p.
[11] K. Christensen and N. R. Moloney, “Complexity and Criticality,” Imperial College Press, London, 2005. doi:10.1142/p365
[12] K. binde and W. Kob, “Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics,” World Scientific Publishing Co., Singapore, 2005.
[13] M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Physical Review Letters, Vol. 50, No. 17, 1983, pp. 1285-1288. doi:10.1103/PhysRevLett.50.1285
[14] S. M. Foiles, “Calculation of the Surface Segregation of Ni-Cu Alloys with the Use of the Embedded-Atom Me- thod,” Physical Review B, Vol. 32, No. 12, 1985, pp. 7685-7693. doi:10.1103/PhysRevB.32.7685
[15] D. K. Landau and K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics,” World Scientific Pub- lishing Co., Singapore, 2000.
[16] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogués, “Beating the Superparamagnetic Limit with Exchange Bias,” Nature, Vol. 423, 2003, pp. 850-853. doi:10.1038/nature01687

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.