A simple and efficient seed-based approach to induce callus production from B73 maize genotype

Abstract

The wild type maize genotype, B73, is not amenable for callus production and an efficient protocol for B73 maize callus induction has never been reported up-to-date. Scientific efforts in producing B73 maize callus using all known callus inducible media have been unsatisfactory. Here we developed and described an efficient protocol for callus induction from B73 maize seedlings. The protocol is based on well known callus inducible media CM4C where we have sequentially subtracted some chemical compounds and added some new compounds mediating cell proliferations. This newly described protocol was able to induce callus production in a wide range of crop species including rice and soybean. We found that cell proliferation factors, NAA (auxin analog) and 2,4 D (auxin influx carrier) were not only very crucial but required for positive B73 maize callus induction. The absence of one or the other will lead to the failure of B73 maize callus production. The well known CM4C callus induction composition lacks NAA. Our findings will advance genetic studies of maize mutants generated from B73 genotype background.

Share and Cite:

Kotchoni, S. , Noumavo, P. , Adjanohoun, A. , Russo, D. , Dell’Angelo, J. , Gachomo, E. and Baba-Moussa, L. (2012) A simple and efficient seed-based approach to induce callus production from B73 maize genotype. American Journal of Molecular Biology, 2, 380-385. doi: 10.4236/ajmb.2012.24039.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ishida, Y., Satto, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 14, 745-750. doi:10.1038/nbt0696-745
[2] Songstad, D.D., Armstrong, C.L., Petersen, W.L., Hairston, B. and Hinchee, M.A.W. (1996) Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Developmental Biology, 32, 179-183.
[3] Wan, Y., Widholm, J.M. and Lemaux, P.G. (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta, 196, 7-14. doi:10.1007/BF00193211
[4] Walters, D.A., Vetsch, C.S., Potts, D.E. and Lundquist, C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology, 18, 189-200. doi:10.1007/BF00034948
[5] Green, C.E., Armstrong, C.L. and Andersen, P.C. (1983) Somatic cell genetic systems in corn. In: Downey, K., Voellmy, R.W., Ahmad, F. and Schultz, J., Eds., Advances in gene technology: Molecular genetics of plants and animals, Academic, New York, 147-157.
[6] Vasil, V. and Vasil, I.K. (1986) Plant regeneration from friable embryogenic callus and cell suspension cultures of Zea mays L. Journal of Plant Physiology, 124, 399-408. doi:10.1016/S0176-1617(86)80196-1
[7] Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T.M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology, 8, 833-839. doi:10.1038/nbt0990-833
[8] Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R., Jr. Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P. and Lemaux, P.G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 2, 603-618.
[9] Rhodes, C.A., Lowe, K.S. and Ruby, K.L. (1988) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Biotechnology, 6, 56-60. doi:10.1038/nbt0188-56
[10] Shillito, R.D., Carwell, G.K., Johnson, C.M., Dimaio, J.J. and Harms, C.T. (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Biotechnology, 7, 581-587. doi:10.1038/nbt0689-581
[11] Morocz, S., Donn, G., Nemeth, J. and Dudits, D. (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from highly embryogenic suspension culture. Theoretical and Applied Genetics, 80, 721-726. doi:10.1007/BF00224183
[12] Golovkin, M.V., Abraham, M., Morocz, S., Bottka, S., Feher, A. and Dudits D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Science, 90, 41-52. doi:10.1016/0168-9452(93)90154-R
[13] Cheng, M., Lowe, B.A., Spencer, M., Ye, X. and Armstrong, C.L. (2004) Factors influencing Agro-bacterium-mediated transformation of monocotyledonous species. In Vitro Cell Developmental Biology, 40, 31-45.
[14] Morel, G.M. and Wetmore, R.H. (1951) Tissue culture of monocotyledons. American Journal of Botany, 38, 138-140. doi:10.2307/2437836
[15] Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W. and Wan, Y. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 115, 971-980.
[16] Cartwright, H.N., Humphries, J.A. and Smith, L.G. (2009) PAN1: A receptor-like protein that promotes polarization of an asymmetric division in maize. Science, 323, 649- 651. doi:10.1126/science.1161686
[17] Lührs, R. and L?rz, H. (1987) Plant regeneration in vitro from embryogenic cultures of spring- and winter-type barley (Hordeum vulgare L.) varieties. Theorical and Applied Genetics, 75, 16-25. doi:10.1007/BF00249136
[18] Sidorov, V.,·Gilbertson, L.,·Addae, P. and·Duncan, D. (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Reports, 25, 320-328. doi:10.1007/s00299-005-0058-5
[19] Mélida, H.,·García-Angulo, P., Alonso-Simón, A., Encina, A., álvarez, J. and Acebes, J.L. (2009) Novel type II cell wall architecture in dichlobenil-habituatedmaize calluses. Planta, 229, 617-631. doi:10.1007/s00425-008-0860-8
[20] Zhou, H., Arrowsmith, J.W., Fromm, M.E., Hironaka, C.M., Taylor, M.L., Rodriguez, D., Pajeau, M.E., Brown, S.M., Santino, C.G. and Fry, J.E. (1995) Glyphosate-tolerent CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Reports, 15, 159-163. doi:10.1007/BF00193711
[21] Paciorek, T., Za?ímalová, E., Ruthardt, N., Petrá?ek, J., Stierhof, Y-D., Kleine-Vehn, J., Morris, D.A., Emans, N., Jürgens, G., Geldner, N. and Friml, J. (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature, 435, 1251-1256. doi:10.1038/nature03633
[22] Delbarre, A., Muller, P., Imhoff, V. and Guern, J. (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta, 198, 532-541. doi:10.1007/BF00262639
[23] Lupotto, E. (1984). Callus induction and plant regeneration from barley mature embryos. Annals of Botany, 54, 523-530.
[24] Machii, H., Mizuno, H., Hirabayashi, T., Li, H. and Hagio, T. (1998) Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell, Tissue and Organ Culture, 53, 67-74. doi:10.1023/A:1006023725640
[25] Mohmand, A.S. and Nabors, M.W. (1991) Comparison of two methods for callus culture and plant regeneration in wheat (Triticum aestivum). Plant Cell, Tissue and Organ Culture, 26, 185-187.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.