Overview of Multidrug-Resistant Pseudomonas aeruginosa and Novel Therapeutic Approaches

Abstract

Gram-negative bacilli Pseudomonas aeruginosa is an important pathogen in hospitalized patients, contributing to their morbidity and mortality due to its multiple resistance mechanisms. Therefore, as therapeutic options become restricted, the search for new agents is a priority. Latterly an accelerated increase in frequency of multidrug-resistant clinical strains has severely limited the availability of therapeutic options. Several in vitro and in vitro studies evaluating the efficacy of different antimicrobials agents and development of vaccines against P. aeruginosa have been reported as novel approaches, such as inhibition of virulence factor expression or inhibition of their metabolic pathways.

Share and Cite:

M. Porras-Gómez, J. Vega-Baudrit and S. Núñez-Corrales, "Overview of Multidrug-Resistant Pseudomonas aeruginosa and Novel Therapeutic Approaches," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4A, 2012, pp. 519-527. doi: 10.4236/jbnb.2012.324053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Ozer, M. Tatman-Otkun, D. Memis, M. Otkun, “Characteristics of Pseudomonas aeruginosa isolates from intensive care unit. Central European Journal of Medicine, Vol. 4, No. 29, 2009, pp. 156-163. doi:10.1007/s00005-006-0012-4
[2] M. Wróblewska, “Novel therapies of multidrug-resistant Pseudomonas ae-ruginosa and Acinetobacter spp. infections: state of the art”, Archivum Immunologiae et Therapia Experimentalis, Vol. 54, 2006, pp. 113-120. doi:10.1007/s00005-006-0012-4
[3] H. Kobayashi, O. Kobayashi, S. Kawai, “Pathogenesis and clinical manife-stations of chronic colonization by Pseudomonas aeruginosa and its biofilms in the airway tract”, Journal of Infection and Chemotherapy, Vol. 15, 2009, pp. 125-142. doi:10.1007/s10156-008-0691-3
[4] A. Verma, R. Rampal, “Glycosylation Islands of Pseudomonas Species” In: J. L. Ramos, A. Filloux. Pseudomonas, Springer Netherland, 5, 2007, pp. 31-56.
[5] S. Zhang, F. McCormack, R. Levesque, G. O'Toole, G. Lau, “The Flagellum of Pseudomonas aeruginosa Is Required for Resistance to Clearance by Surfactant Protein A”, Public Library of Science. Vol. 2, No. 6, 2007, pp. e564.
[6] H. Krivam, D. Roberts, V. Ginsburg, “Many pulmonary bacteria bind specifically to the carbohydrate sequence Gal NAc (β1–4) Gal found in some glycolipids”, Proceedings of the National Academy of Sciences, Vol. 85, 1998, pp. 6157–61. doi:10.1073/pnas.85.16.6157
[7] G. Lamblin, M. Lhermitte, A. Klein, N. Houdret, A. Scharfman, R. Ramphal, P. Roussel, “The carbohydrate diversity of human respiratory mucins; a protection of the underlying mucosa?” American Review of Respiratory Diseases, Vol. 144, 1991, pp. s19–s24.
[8] D. Davies, M. Parsek, J. Pearson, B. Iglewski, B. Costerton, E. Greenberg, “The involvement of cell signals in the development of a bacterial biofilm”, Science, Vol. 280, 1998, No. 295–8.
[9] R. Smith, B. Iglewski, “Pseudomonas aeruginosa quorum sensing systems and virulence”, Current Opinion in Microbiology, Vol. 6, 2003, pp. 56-60. doi:10.1016/S1369-5274(03)00008-0
[10] A. Imberty, M. Wimmerová, E. Mitchell, N. Gilboa, “Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition”, Microbes and Infection, Vol. 6, 2004, pp. 221–228. doi:10.1016/j.micinf.2003.10.016
[11] M. Araque, E. Velazco, “In vitro activity of fleroxacin against multire-sistant gram-negative bacilli isolated from patients with nosocomial infections”, Intensive Care Medicine, Vol. 24, 1998, pp.839-844. doi:10.1007/s001340050675
[12] J. Karlowsky, D. C. Draghi, M. Jones, C. Thornsberry, I. Friedland, D. Sahm, “Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001”, Antimicrobial Agents and Chemotherapy, Vol. 47, 2003, pp. 1681–1688. doi:10.1128/AAC.47.5.1681-1688.2003
[13] M. Wilke, A. Lovering, N. Strynadka, “b-Lactam antibiotic resistance: a current structural perspective”, Current Opinion in Microbiology, Vol. 8, 2005, pp. 525-533. doi:10.1016/j.mib.2005.08.016
[14] G. Estiu, D. Suárez, K. Merz, “Quantum Mechanical and Molecular Dynamics Simulations of Ureases and Zn Beta-Lactamases”. Journal of Computational Chemistry, Vol. 27, 2006, pp. 1240-1262. doi:10.1002/jcc.20411
[15] R. Choudhury, S. Srivastava, “Zinc resistance mechanisms in bacteria”, Current Science, Vol. 81, No. 7, 2001, pp. 768-775.
[16] M. Vasil, “How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events”, Biometals, Vol. 20, 2007, pp. 587-601. doi:10.1007/s10534-006-9067-2
[17] T. Krell, A. Busch, M. Guazaaroni J. Lacal, M. Gallegos, W. Téran, “The Use of Microcalorimetry to Study Regulatory Mechanisms in Pseudomonas” In: J. L. Ramos, A. Filloux. Pseudomonas. Springer Netherland, 5, 2007, pp. 255-277.
[18] A. Kadry, “Lack of Efflux Mechanism in a Clinical Isolate of Pseudomonas aeruginosa Highly Resistant to Beta-Lactams and Imipenem”, Folia Microbiologica, Vol. 4, 2003, pp. 529-533. doi:10.1007/BF02931336
[19] M. Webber, L. Piddock, “The importance of efflux pumps in bacterial antibiotics resistance”, Journal of Antimicrobial Chemotherapy, Vol. 51, 2003, pp. 9-11. doi:10.1093/jac/dkg050
[20] F. Van, E. Balzi, P. Tulkens, “ Antibiotic Efflux Pumps”, Biochemical Pharmacology, Vol. 60, 2000, pp. 457-470. doi:10.1016/S0006-2952(00)00291-4
[21] K. Poole, “Multidrug Efflux Pumps and Antimicrobial Resistance in Pseudomonas aeruginosa and Related Organisms”, Journal of Molecular Microbiology and Biotechnology, Vol. 3, No. 2, 2001, pp. 255-264.
[22] Y. Chen, H. Chang, C. Lu, H. Peng, “Evolutionary Analysis of the Two-Component System in Pseudomonas Aeruginosa PA01”, Journal of Molecular Evolution, Vol. 59, 2004, pp. 725-737. doi:10.1007/s00239-004-2663-2
[23] J. Guespin, G. Bernot, J. Comet, A. Méireau, A. Richard, C. Hulen, B. Polack, “Epigenesis and dynamic similarity in two regulatory networks in Pseudomonas aeruginosa”, Acta Bio-theoretica, Vol. 52, 2004, pp. 379-390. doi:10.1023/B:ACBI.0000046604.18092.a7
[24] C. Stover, X. Pham, A. Erwin, S. Mizoguchi, P. Warrener, M. Hickey, F. Brinkman, W. Hufnagle, D. Kowalik, M. Lagrou, R. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. Brody, S. Coulter, K. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. Wong, Z. Wu, I. Paulsen, J. Reizer, M. Saier, R. Hancock, S. Lory, M. Olson, “Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen” Nature, Vol. 406, 2000, pp. 959-964. doi:10.1038/35023079
[25] A. Dotsch, F. Klawon, M. Jarek, M. Scharfe, H. Blocker, S. Haussler, “Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa”, BMC Genomics. Vol. 11, 2010, pp. 234. doi:10.1186/1471-2164-11-234
[26] M. Falagas, I. Bliziotis, S. Kasiakou, G. Samonis, P. Athanassopoulou, A. Michalopoulos, “Outcome of infections due to pan-drug-resistant (PDR) Gram-negative bacteria”, BMC In-fectious Diseases, Vol. 5, 2005, pp. 24–30. doi:10.1186/1471-2334-5-24
[27] D. Landman, S. Bratu, M. Alam, J. Quale, “Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B”, Journal of Antimicrobial Chemotherapy, Vol. 55, 2005, pp. 954–957. doi:10.1093/jac/dki153
[28] A. Huh, Y. Kwon, “Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era”, Journal of Controlled Release, Vol. 156, 2011, pp. 128–145. doi:10.1016/j.jconrel.2011.07.002
[29] S. Oie, T. Ue-matsu, A. Sawa, H. Mizuno, M. Tomita, S. Ishida, Y. Okano, A. Kamiya, “In vitro effects of combinations of antipseudomonal agents against seven strains of multi-drug-resistant Pseudomonas aeruginosa”, Journal of Antimicrobiology Chemotherapy, Vol. 52, 2003, pp. 911–914. doi:10.1093/jac/dkg478
[30] T. Hoang, H. Schweizer, “Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis”, Journal of Bacteriology, Vol. 181, 1999, pp. 5489–5497.
[31] J. Soothill, “Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa”, Burns, Vol. 20, 1994, pp. 209-211. doi:10.1016/0305-4179(94)90184-8
[32] M. Singh, S. Singh, S. Prasad I. Gambhir, “Nanotechnology in medicine and antibacterial effect of silver nanoparticles”, Digest Journal of Nanomaterials and Biostructures, Vol. 3, No. 3, 2008, pp. 115-122.
[33] A. Brown, K. Smith, T. Samuels, J. Lu, S. Obare, M. Scott, “Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus”, Applied and Enviromental Microbiology, Vol. 78, No. 13, 2012, pp. 2768-2774. doi:10.1128/AEM.06513-11
[34] L. Zhang, D. Pornpattananangkul, C. Hu, C. Huang, “Development of Nanoparticles for Antimicrobial Drug Delivery” Current Medicinal Chemistry, Vol. 17, 2010, pp. 585-594. doi:10.2174/092986710790416290
[35] M. Alipour, M. Halwani, A. Omri, Z. Suntres, “Antimicrobial effectiveness of liposomal polymyxin B against resistant Gramnegative bacterial strains”, International Journal of Pharmaceutics, Vol. 355, 2008, pp. 293-8. doi:10.1016/j.ijpharm.2007.11.035

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.