Morphological, Vibrational and Thermal Properties of Confined Graphene Nanosheets in an Individual Polymeric Nanochannel by Electrospinning

Abstract

Graphene is a single layer of carbon atoms arranged in a two dimension hexagonal lattice. It appeared very quickly that this exceptional material had truly outstanding electronic, mechanical, thermal and optical properties. The main goal of this work is the confinement of graphene nanosheets in an individual polymeric nanofiber and the study of their vibrational and thermal properties in one dimension. After their preparation, graphene sheets were mixed with Polyethylene oxide (PEO) solution to be electrospinned. The synthesized nanofibers were systematically investigated by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy measurements and their morphology and structure were characterized by atomic force microscopy (AFM), optical microscope and Scanning Electron Microscope (SEM) and finally thermogravimetric analysis (TGA) to check G/PEO mass ratio and interactions to prove the capability of PEO to be a good envelope for the confinement and the alignment of graphene nanosheets in a one dimensional system.

Share and Cite:

Khenfouch, M. , Baïtoul, M. , Aarab, H. and Maaza, M. (2012) Morphological, Vibrational and Thermal Properties of Confined Graphene Nanosheets in an Individual Polymeric Nanochannel by Electrospinning. Graphene, 1, 15-20. doi: 10.4236/graphene.2012.12002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. K. Geim and K.S. Novoselov, “The Rise of Gra- phene,” Nature Materials, Vol. 6, No. 3, 2007, pp. 183- 191.doi:10.1038/nmat1849
[2] Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Ex- perimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene,” Nature, Vol. 438, No. 7065, 2005, pp. 201-204. doi:10.1038/nature04235
[3] X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang and H. J. Dai, “Highly Conducting Graphene Sheets and Langmuir-Blodgett Films,” Nature Nanotech- nology, Vol. 3, No. 9, 2008, pp. 538-542. doi:10.1038/nnano.2008.210
[4] S. Gilje, S. Han, M. Wang, K. L. Wang and R. B. Kaner, “A Chemical Route to Graphene for Device Applica- tions,” Nano Letters, Vol. 7, No. 11, 2007, pp. 3394-3398. doi:10.1021/nl0717715
[5] M. Khenfouch, M. Baitoul and M. Maaza, “Synthesis and Gas Sensing Properties of Graphene-ZnO Nanorods,” Global Journal of Physical Chemistry, Vol. 2, No. 2, 2011, pp. 165-169.
[6] G. Eda, G. Fanchini and M. Chhowalla, “Large-Area Ultrathin ?lms of Reduced Graphene Oxide as a Trans- Parent and ?exible Electronic Material,” Nature Nano- technology, Vol. 3, No. 5, 2008, pp. 270-274. doi:10.1038/nnano.2008.83
[7] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Electromechanical Resonators from Graphene Sheets,” Science, Vol. 315, No. 5811, 2007, pp. 490-493. doi:10.1126/science.1136836
[8] M. D. Stoller, Y. S. Park, J. A. Zhu and R. S. Ruo, “Gra- phene-Based Ultracapacitors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3498-3502. doi:10.1021/nl802558y
[9] Z. Liu, Q. Liu, Y. Huang, et al., “Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene,” Advanced Materials, Vol. 20, No. 20, 2008, pp. 3924- 3930. doi:10.1002/adma.200800366
[10] W. Zhao, W. Furong, W. Hang and C. Guohua, “Prepara- tion of Colloidal Dispersions of Graphene Sheets in Or- ganic Solvents by Using Ball Milling,” Journal of Nano- materials, Vol. 10, No. 1155, 2010, pp. 1-5. doi:10.1155/2010/528235
[11] J. Doshi and D. H. Reneker, “Electrospinning Process Moreover Applications of Electrospun Fibers,” Journal of Electrostatics, Vol. 35, No. 2-3, 1995, pp. 151-160. doi:10.1016/0304-3886(95)00041-8
[12] S. N. Thandavamoorthy, S. N. Gopinath and S. S. Ram- kumar, “Self-Assembled Honeycomb Polyurethane Nan- ofibers,” Journal of Applied Polymer Science, Vol. 101, No. 5, 2006, pp. 3121-3124. doi:10.1002/app.24333
[13] B. Sundaray, V. J. Babu, V. Subramanian and T. S. Nata- rajan, “Preparation and Characterization of Electrospun Fibers of Poly (Methyl Methacrylate)-Single Walled Car- bon Nanotube Nanocomposites,” Journal of Engineered Fibers and Fabrics, Vol. 3, No. 4, 2008, pp. 39-45.
[14] F. T. Thema, M. J. Moloto, E. D. Dikio, N. N. Nyangiwe, L. Kotsedi, M. Maaza and M. Khenfouch, “Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Ox- ide,” Journal of Chemistry, Vol. 2013, No. 2013, 2013, pp. 1-6.
[15] P. Guo, H. Song and X. Chen, “Electrochemical Perfor- mance of Graphene Nanosheets as a Node Material for Lithiumion Batteries,” Electrochemistry Communications, Vol. 11, No. 6, 2009, pp. 1320-1324. doi:10.1016/j.elecom.2009.04.036
[16] Y. X. Xu, H. Bai, G. W. Lu, C. Li and G. Q. Shi, “Flexi- ble Graphene Films via the Filtration of Water Soluble Noncovalent Functionalized Graphene Sheets,” Journal of the American Chemical Society, Vol. 130, No. 18, 2008, pp. 5856-5857. doi:10.1021/ja800745y
[17] D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wal- lace, “Processable Aqueous Dispersions of Graphene Nano- sheets,” Nature Nanotechnology, Vol. 3, No. 2, 2008, pp. 101-105. doi:10.1038/nnano.2007.451
[18] P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Al- binsson and B. E. Mellander, “Effect of Nano-Porous Al2O3 on Thermal, Dielectric and Transport Properties of the (PEO)9LiTFSI Polymer Electrolyte System,” Elec- trochimica Acta, Vol. 47, No. 20, 2002, pp.3257-3268. doi:10.1016/S0013-4686(02)00243-8
[19] R. M. Silverstein and G. C. Bassler, “Spectrometric Iden- tification of Organic Compounds,” John Wily & Sons Inc., New York, 1964.
[20] Z. Shen, G. P. Simon and Y. B. Cheng, “Comparison of Solution Intercalation and Melt Intercalation of Poly- mer-Clay Nancomposites,” Polymer, Vol. 43, No. 15, 2002, pp. 4251-4260. doi:10.1016/S0032-3861(02)00230-6
[21] S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen and R. Ruoff, “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon, Vol. 45, No. 7, pp. 1558-1565. doi:10.1016/j.carbon.2007.02.034

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.