Share This Article:

Demand and Supply of Water for Agriculture: Influence of Topography and Climate in Pre-Alpine, Mesoscale Catchments

Abstract Full-Text HTML Download Download as PDF (Size:964KB) PP. 145-155
DOI: 10.4236/nr.2012.33019    3,571 Downloads   6,763 Views   Citations


With climate change, water may become limited for intensive agriculture even in regions presently considered “water-rich”. Information about the potential water requirement and its temporal and spatial variability can help to develop future water management plans. A case study was carried out for Switzerland with its highly complex pre-alpine topography and steep gradients in climate. The hydrological model WaSiM-ETH was used to simulate net irrigation requirement (NIR) for cropland, grassland and orchards using criteria to define irrigation periods based either on the water stress level (expressed by the ratio of actual (aET) to potential evapotranspiration ((pET) (Method 1) or on thresholds for soil water potential (Method 2). Simulations for selected catchments were carried out with a daily time step for the period 1981-2010 using a 500 × 500 m spatial resolution. Catchment-scale NIR ranged between 0 and 4.3 million m3 and 0 and 7.3 million m3 for the two methods, respectively, with no trend over the observation period in any catchment. During the heat wave in 2003, NIR increased by a factor of 1.5 to 2.3 relative to the mean, and in catchments where discharge is directly dependent on precipitation, NIR in the summer of 2003 reached the limits of river water availability. In contrast, in a region with water supply from glacier melt water, highest NIR in 2003 still remained far below total river discharge. The results show that NIR varies strongly between years and across the landscape, and even in a presently cool-temperate climate, irrigation may put pressure on regional water resources under extreme climatic conditions that may become more frequent by the end of the 21st century.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Fuhrer and K. Jasper, "Demand and Supply of Water for Agriculture: Influence of Topography and Climate in Pre-Alpine, Mesoscale Catchments," Natural Resources, Vol. 3 No. 3, 2012, pp. 145-155. doi: 10.4236/nr.2012.33019.


[1] B. C. Bates, Z. W. Kundzewicz, S. Wu and J. P. Palutikof, “Climate Change and Water,” Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2008, 210 p.
[2] M. I. Budyko, “Climate and Life,” Academic Press, Orlando, 1974, 508 p.
[3] European Commission, “Agricultural Statistics. Main Results 2006-2007,” KS-ED-08-001-EN-N, 2008.
[4] European Environment Agency, “Water Resources across Europe—Confronting Water Scarcity and Drought,” EEA Report 2/2009, 2009, 55 p.
[5] J. Sillmann and E. Roeckner, “Indices for Extreme Events in Projections of Anthropogenic Climate Change,” Climatic Change, Vol. 86, No. 1-2, 2008, pp. 83-104. doi:10.1007%2Fs10584-007-9308-6
[6] K. R. Briffa, G. van der Schrier and P. D. Jones, “Wet and Dry Summers in Europe Since 1750: Evidence of Increasing Drought,” International Journal of Climatology, Vol. 29, No. 13, 2009, pp. 1894-1905. doi:10.1002%2Fjoc.1836
[7] P. M. Della-Marta, M. R. Haylock, J. Luterbacher and H. Wanner, “Doubled Length of Western European Summer Heat Waves since 1880,” Journal of Geophysical Research D: Atmospheres, Vol. 112, 2007, Article ID: D15103. doi:10.1029/2007JD008510
[8] J. R?is?nen, U. Hansson, A. Ullerstieg, R. D?scher, L. P. Graham, C. Jones, H.E.M. Meier, P. Samuelson and U. Willén, “European Climate in the Late Twenty-First Century: Regional Simulations With Two Driving Global Models and Two Forcing Scenarios,” Climate Dynamics, Vol. 22, No. 1, 2004, pp. 13-31. doi:10.1007/s00382-003-0365-x
[9] J. Fuhrer, M. Beniston, A. Fischlin, Ch. Frei, S. Goyette, K. Jasper and C. Pfister, “Climate Risks and Their Impact on Agricultural Land and Forests in Switzerland,” Climate Change, Vol. 79, No. 1-2, 2006, pp. 79-102. doi:10.1007/s10584-006-9106-6
[10] M. Beniston, “The 2003 Heat Wave in Europe. A shape of Things to Come?” Geophysical Research Letters, Vol. 31, 2004, pp. 2022-2026. doi:10.1029/2003GL018857
[11] European Environment Agency, “Vulnerability and Adaptation to Climate Change in Europe,” 2005, 79 p.
[12] European Commission, “Drought Management Report,” Technical Report, 2008, 109 p.
[13] G. Wriedt, M. van der Velde, A. Aloe and F. Bouraoui, “A European Irrigation Map for Spatially Distributed Agricultural Modeling,” Agricultural Water Management, Vol. 96, No. 5, 2009, pp. 771-789. doi:10.1016/j.agwat.2008.10.012
[14] G. van der Velde, G. Wriedt and F. Bouraoui, “Estimating Irrigation Use and Effects on Maize Yield during the 2003 Heatwave in France. Agriculture, Ecosystems and Environment, Vol. 135, No. 1-2, 2010, pp. 90-97. doi:10.1016/j.agee.2009.08.017
[15] M. Weber and A. Schild, “Stand der Bew?sserung in der Schweiz. Bericht zur Umfrage 2006,” Report, Federal Office of Agriculture, Bern, 2007, 17 p.
[16] P. D?ll and S. Siebert, “Global Modeling of Irrigation Water Requirements,” Water Resources Research, Vol. 38, 2002, 8.1-8.10. doi:10.1029/2001WRR000355
[17] G. Wriedt, M. van der Velde, A. Aloe and F. Bouraoui, “Estimating Irrigation Requirements in Europe,” Journal of Hydrology, Vol. 373, No. 3-4, 2009, pp. 527-544. doi:10.1016/j.jhydrol.2009.05.018
[18] J. Schulla, “Model Description WaSim,” Technical Report, 2012, 300 p.
[19] J. Schulla, “Hydrologische Modellierung von Flussgebieten zur Absch?tzung der Folgen von Klima?nderungen (Hydrological Modelling of River Basins for Estimating the Effects of Climate Change),” Zürcher Geographische Schriften 69, 1997, ETH Zurich, Switzerland.
[20] J. Kleinn, C. Frei, J. Gurtz, D. Lüthi, P. L. Vidale and C. Sch?r, “Hydrologic Simulations in the Rhine Basin Driven by a Regional Climate Model,” Journal of Geophysical Research, Vol. 110, 2004, Article ID: D04102. doi:10.1029/2004JD005143
[21] K. Jasper, P. Calanca and J. Fuhrer, “Changes in Summertime Soil Water Patterns in Complex Terrain Due to Climatic Change,” Journal of Hydrology, Vol. 327, No. 3-4, 2006, pp. 550-563. doi:10.1016/j.jhydrol.2005.11.061
[22] J. Doorenbos and A. H. Kassam., “Yield Response to Water,” FAO Irrigation and Drainage Paper No. 56. Rome, 1979, 193 p.
[23] J. Schulla and K. Jasper, “Model Description WaSiM-ETH,” 2007.
[24] G. Müller, “Die Beobachtungsnetze der Schweizerischen Meteorologischen Anstalt. Konzept 1980,” Arbeitsberichte der Schweizerischen Meteorologischen Anstalt, Nr. 93, 1980, Anhang Ib. Zürich.
[25] Bundesamt für Statistik, “Die Digitale Bodeneignungskarte der Schweiz. überarbeitung 2000,” Federal Office of Statistics, Neuchatel, 2004.
[26] M. T. van Genuchten, “A closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Science Society of America Journal, Vol. 44, No. 5, 1980, pp. 892-898. doi:10.2136/sssaj1980.03615995004400050002x
[27] R. F. Carsel and R. S. Parrish, “Developing Joint Probability Distributions of Soil Water Retention Characteristics,” Water Resources Research, Vol. 24, No. 5, 1988, pp. 755-769. doi:10.1029/WR024i005p00755
[28] J. L. Monteith and M. H. Unsworth, “Principles of Environmental Physics,” 2nd Edition, Edward Arnold, London, 1990.
[29] F. M. Chmielewski, Y. Henniges, B. Schultze, H. P?hler and J. Scherzer, “Weiterentwicklung von WaSiM-ETH und Coupmodel—Implementierung Flexibler Vegetation- sperioden (KliWEP-Ph?nologie—Forstmodul). Abschlussbericht,” S?chsische Landesanstalt für Landwirtschaft, Dresden, 2007, 37 p.
[30] H. P?hler, F. M. Chmielewski, K. Jasper, Y. Henniges and J. Scherzer, “KliWEP—Absch?tzung der Auswirkungen der für Sachsen Prognostizierten Klimaver?nderungen auf den Wasser-und Stoffhaushalt im Einzugsgebiet der Parthe Weiterentwicklung von WaSiM-ETH: Implikation Dynamischer Vegetationszeiten und Durchführung von Testsimulationen für S?chsische Klimaregionen,” S?chsische Landesamt für Umwelt und Geologie, Dresden, 2007, 74 p.
[31] C. Ammann, C. Spirig, J. Leifeld, and A. Neftel, “Assessment of the Nitrogen and Carbon Budget of Two Managed Temperate Grassland Fields,” Agriculture Ecosystems and Environment, Vol. 133, No. 3-4, 2009, pp. 150-162. doi:10.1016/j.agee.2009.05.006
[32] J. E. Nash and J. V. Sutcliffe, “River Flow Forecasting Through Conceptual Models. Part I. A Discussion of Principles,” Journal of Hydrology, Vol. 10, No. 3, 1970, pp. 282-290. doi:10.1016/0022-1694(70)90255-6
[33] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel and T. L. Veith, “Model Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations,” Transactions of the ASABE, Vol. 50, No. 3, 2007, pp. 885-900. /PDF
[34] G. R. Biesbroek, R. J. Swart, T. R. Carter, C. Cowan, T. Henrichs, H. Mela, M. D. Morecroft and D. Rey, “Europe Adapts To Climate Change: Comparing National Adaptation Strategies,” Global Environmental Change, Vol. 20, 3, 2010, pp. 440-450. doi:10.1016/j.gloenvcha.2010.03.005
[35] R. Weingartner, D. Viviroli and B. Sch?dler, “Water Resources In Mountain Regions: A Methodological Approach To Assess The Water Balance In A High-land-Lowland System,” Hydrological Processes, Vol. 21, No. 5, 2007, pp. 578-585. doi:10.1002/hyp.6268
[36] A. Lüttger, B. Dittmann and H. Sourell, “Leitfaden zur Beregnung landwirtschaftlicher Kulturen,“ Schriftenreihe des Landesamtes für Verbraucherschutz, Landwirtschaft und Flurneuordnung, Bd 6, Heft IV, Potsdam, 2005, 16 p.
[37] J. Fuhrer, “Sustainability of Crop Production Systems under Climate Change,” In: P. C. D. Newton, R. A. Carran, G. R. Edwards and P. A. Niklaus, Eds., Agroecosystems in a Changing Climate, CRC Press, Boca Raton, 2007, pp. 167-185.
[38] D. Maraun, F. Wetterhall, A. M. Ireson, R. E. Chandler, E. J. Kendon, M. Widmann, S. Brienen, H. W. Rust, T. Sauter, M. Themessl, V. K. C. Venema, K. P. Chun, C. M. Goodess, R. G. Jones, C. Onof, M. Vrac and I. Thiele-Eich, “Precipitation Downscaling under Climate Change. Recent Developments to Bridge the Gap between Dynamical Models and the End User,” Reviews of Geophysics, Vol. 48, 2010, Article ID: RRG3003. doi:10.1029/2009RG000314.
[39] CH2011, “Swiss Climate Change Scenarios CH2011,” C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, 2011, 88 p.
[40] F. Keller and J. Fuhrer, “Die Landwirtschaft und der Hitzesommer 2003,” Agrarforschung, Vol. 11, No. 9, 2004, pp. 403-410
[41] C. Sch?r, P. L. Vidale, D. Lüthi, C. Frei, C. H?berli, M. Liniger and C. Appenzeller, “The Role Of Increasing Temperature Variability For European Summer Heat Waves,” Nature, Vol. 427, No. 6972, 2004, pp. 332-336. doi:10.1038/nature02300
[42] P. Calanca, “Climate Change and Drought Occurrence in The Alpine Region: How Severe Are Becoming The Extremes?” Global and Planetary Change, Vol. 57, No. 1-2, 2006, pp. 151-160. doi:10.1016/j.gloplacha.2006.11.001
[43] C. Brouwer, K. Prins and M. Heibloem, “Irrigation Water Management: Irrigation Scheduling,” Training Manual No. 4, 1989, Food and Agriculture Organization, Rome, 43 p.
[44] T. A. Howell, “Irrigation Efficiency,” In: T. A. Howell, Ed., Encyclopedia of Water Science. Marcel Dekker Inc., New York, 2003, pp. 467-472. doi:10.1081/E-EWS 120010252
[45] ProClim, “Hitzesommer 2003,“ Synthesebericht, Bern, 2004, 28 p.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.