Share This Article:

Understanding Differential Responses of Grapevine (Vitis vinifera L.) Leaf and Fruit to Water Stress and Recovery Following Re-Watering

Abstract Full-Text HTML Download Download as PDF (Size:978KB) PP. 1232-1240
DOI: 10.4236/ajps.2012.39149    5,182 Downloads   9,327 Views   Citations


Among all fruit crops of horticultural importance, grapevines (Vitis vinifera L.) stand out as the most drought tolerant crop species whose tolerance is credited to their proficiency to recover from water stress in both the natural and vineyard growing conditions. However, information on the recovery responses is relatively scant. Studies were conducted to address this issue using potted vines of the grapevine cultivar, Cabernet Sauvignon, which was subjected to water stress and along with anatomical and ultrastructural characterizations, physiological status was assessed in healthy and water stressed vines, and following recovery via rewatering from the water stressed vines. Water stress induced wilting of leaves, drooping of tendrils, and desiccation followed by abscission of shoot tip leaving behind a brown scar at the shoot apex. The wilted leaves accumulated ABA, which correspondingly reduced stomatal conductance and leaf water potential. Upon re-watering, both these parameters made a recovery with values similar to healthy leaves. Likewise, leaf anatomical features following rewatering resembled to that of healthy leaves. In clusters, water stress caused shriveling of preveraison (unripened) berries, which regained full turgor following water resupply, whereas the postveraison (ripening) berries in the same cluster remained unaffected as evidenced by the presence of viable mesocarp cells and epicuticular wax in the form of platelets. The study revealed that shoot tip with leaf primordia was most sensitive to water stress followed by fully expanded leaves and preveraison berries, whereas the postveraison berries remained unaffected. This information could be valuable to implementing irrigation strategies towards sustaining grape production in existing vineyards experiencing episodic droughts and targeted areas prone to drought.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Bondada and J. Shutthanandan, "Understanding Differential Responses of Grapevine (Vitis vinifera L.) Leaf and Fruit to Water Stress and Recovery Following Re-Watering," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1232-1240. doi: 10.4236/ajps.2012.39149.


[1] N. D. Hallam and S. E. Luff, “Fine Ultrastructural Changes in the Mesophyll Tissues in the Leaves of the Xerophyta Villosa during Desiccation,” Botanical Gazette, Vol. 141, No. 2, 1980, pp. 173-179. doi:10.1086/337140
[2] K. Chartzoulakisa, A. Patakasb, G. Kofidisc, A. Bosabalidisc and A. Nastou, “Water Stress Affects Leaf Anatomy, Gas Exchange, Water Relations and Growth of Two Avocado Cultivars,” Scientia Horticulturae, Vol. 95, No. 1-2, 2002, pp. 39-50. doi:10.1016/S0304-4238(02)00016-X
[3] H. R. Schultz and M. Stoll, “Some Critical Issues in Environmental Physiology of Grapevines: Future Challenges and Current Limitations,” Australian Journal of Grape and Wine Research, Vol. 16, No. s1, 2010, pp. 4-24. doi:10.1111/j.1755-0238.2009.00074.x
[4] C. Lovisolo, I. Perrone, A. Carra, A. Ferrandino, J. Flexas, H. Medrano and A. Schubert, “Drought-Induced Changes in Development and Function of Grapevine (Vitis spp.) Organs and in Their Hydraulic and Non-Hydraulic Interactions at the Whole-Plant Level: A Physiological and Molecular Update,” Functional Plant Biology, Vol. 37, No. 2, 2010, pp. 98-116. doi:10.1071/FP09191
[5] G. H. Salekdeh, J. Siopongco, L. J. Wade and B. Ghareyazie, “John Bennett1proteomic Analysis of Rice Leaves during Drought Stress and Recovery,” Proteomics, Vol. 2, No. 9, 2002, pp. 1131-1145. doi:10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1
[6] M. G. D. Dos Santos, R. V. Ribeiro, R. F. D. Oliveira, E. C. Machado and C. Pimentel, “The Role of Inorganic Phosphate on Photosynthesis Recovery of Common Bean after a Mild Water Deficit,” Plant Sciences, Vol. 170, No. 3, 2006, pp. 659-674. doi:10.1016/j.plantsci.2005.10.020
[7] B. Dichio, C. Xiloyannis, A. Sofo and G. Montanaro, Osmotic Regulation in Leaves and Roots of Olive Trees during a Water Deficit and Rewatering,” Tree Physiology, Vol. 26, No. 2, 2006, pp. 179-185. doi:10.1093/treephys/26.2.179
[8] A. Galle, P. Haldimann and U. Feller, “Photosynthetic Performance and Water Relations in Young Pubescent Oak (Quercus pubescens) Trees during Drought Stress and Recovery,” New Phytologist, Vol. 174, No. 4, 2007, pp. 799-810. doi:10.1111/j.1469-8137.2007.02047.x
[9] L. E. Williams and M. A. Matthews, “Grapevine,” In: B. A. Stewart and D. R. Nielsen, Eds., Irrigation of Agricultural Crops, Agronomy Monograph No. 30, ASA-CSSA-SSSA, Madison, 1990, pp. 1019-1055.
[10] M. Keller, “Managing Grapevines to Optimise Fruit Development in a Challenging Environment: A Climate Change Primer for Viticulturists,” Australian Journal of Grape and Wine Research, Vol. 16, No. s1, 2010, pp. 56-69. doi:10.1111/j.1755-0238.2009.00077.x
[11] A. Pou, J. Flexas, M. D. Alsina, J. Bota, C. Carambula, F. de Herralde, J. Galmes, C. Lovisolo, M. Jimenez, M. Ribas-Carbo, D. Rusjan, F. Secchi, M. Tomas, Z. Zsofi and H. Medrano, “Adjustments of Water Use Efficiency by Stomatal Regulation during Drought and Recovery in the Drought-Adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris),” Physiologia Plantarum, Vol. 134, No. 2, 2008, pp. 313-323. doi:10.1111/j.1399-3054.2008.01138.x
[12] M. Gomez-del-Campo, P. Baeza, C. Ruiz, V. Sotes and J. R. Lissarrague, “Effect of Previous Water Conditions on Vine Response to Rewatering,” Vitis, Vol. 46, No. 2, 2007, pp. 51-55.
[13] F. Giorgi and P. Lionello, “Climate Change Projections for the Mediterranean Region,” Global and Planetary Change, Vol. 63, No. 1-2, 2008, pp. 90-104. doi:10.1016/j.gloplacha.2007.09.005
[14] O. Jaillon, J. M. Aury, B. Noel, et al., “The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla,” Nature, Vol. 449, No. 7162, 2007, pp. 463-468. doi:10.1038/nature06148
[15] L. E. Williams and F. J. Araujo, “Correlations among Predawn Leaf, Midday Leaf, and Midday Stem Water Potential and Their Correlations with Other Measures of Soil and Plant Water Status in Vitis vinifera,” Journal of the America Society for Horticultural Science, Vol. 127, No. 3, 2002, pp. 448-454.
[16] S. E. Ruzin, “Plant Microtechnique and Microscopy,” Oxford University Press, New York, 1999.
[17] H. R. Schultz and M. A. Matthews, “Resistance to Water Transport in Shoots of Vitis vinifera L.: Relation to Growth at Low Water Potential,” Plant Physiology, Vol. 88, No. 3, 1988, pp. 718-724. doi:10.1104/pp.88.3.718
[18] E. T. Thorne, J. F. Stevenson, T. L. Rost, J. M. Labavitch and M. A. Matthews, “Pierce’s Disease Symptoms: Comparison with Symptoms of Water Deficit and the Impact of Water Deficits,” American Journal of Enology and Viticulture, Vol. 57, No. 1, 2006, pp. 1-11.
[19] H. R. Schultz and M. A. Matthews, “Vegetative Growth Distribution during Water Deficits in Vitis vinifera L,” Australian Journal of Plant Physiology, Vol. 15, No. 5, 1988, pp. 641-656. doi:10.1071/PP9880641
[20] T. Gollan, J. B. Passioura and R. Munns, “Soil Water Status Affects the Stomatal Conductance of Fully Turgid Wheat and Sunflower Leaves,” Australian Journal of Plant Physiology, Vol. 13, No. 4, 1986, pp. 459-464. doi:10.1071/PP9860459
[21] B. R. Loveys, “Abscisic Acid Transport and Metabolism in Grapevine (Vitis vinifera L.),” New Phytologist, Vol. 98, No. 4, 1984, pp. 575-582. doi:10.1111/j.1469-8137.1984.tb04150.x
[22] M. L. Rodrigues, T. P. Santos, A. P. Rodrigues, C. R. de Souza, C. M. Lopes, J. P. Maroco, J. S. Pereira and M. M. Chaves, “Hydraulic and Chemical Signalling in the Regulation of Stomatal Conductance and Plant Water Use in Field Grapevines Growing under Deficit Irrigation,” Functional Plant Biology, Vol. 35, No. 7, 2008, pp. 565-579. doi:10.1071/FP08004
[23] I. C. Dodd, “Root-to-Shoot Signalling: Assessing the Roles of ‘Up’ in the Up and Down World of Long-Distance Signalling in Planta,” Plant and Soil, Vol. 274, No. 1-2, 2005, pp. 251-270. doi:10.1007/s11104-004-0966-0
[24] C. Lovisolo, W. Hartung and A. Schubert, “Whole-Plant Hydraulic Conductance and Root-to-Shoot Flow of Abscisic Acid Are Independently Affected by Water Stress in Grapevines,” Functional Plant Biology, Vol. 29, No. 11, 2002, pp. 1349-1356. doi:10.1071/FP02079
[25] A. S. Cohen, Z. Attia and M. Moshelion, “Bundle-Sheath Cell Regulation of Xylem-Mesophyll Water Transport via Aquaporins under Drought Stress: A Target of Xylem-Borne ABA?” The Plant Journal, Vol. 67, No. 1, 2011, pp. 72-80. doi:10.1111/j.1365-313X.2011.04576.x
[26] P. R. Dry and B. R. Loveys, “Grapevine shoot Growth and Stomatal Conductance Are Reduced When Part of the Roots are Dried,” Vitis, Vol. 38, No. 4, 1999, pp. 151-156.
[27] L. E. Williams, N. K. Dokoozlian and R. Wample, “Grape,” In: B. Schaffer and P. C. Anderson, Eds., Handbook of Environmental Physiology of Fruit Crops, CRC Press, Boca Raton, 1994, pp. 85-133.
[28] A. Endo, Y. Sawada, H. Takahashi, M. Okamoto, K. Ikegami, H. Koiwai, M. Seo, T. Toyomasu, W. Mitsuhashi, K. Shinozaki, M. Nakazono, Y. Kamiya, et al., “Drought Induction of Arabidopsis 9-Cis-epoxycarotenoid Dioxygenase Occurs in Vascular Parenchyma Cells,” Plant Physiology, Vol. 147, No. 4, 2008, pp. 1984-1993. doi:10.1104/pp.108.116632
[29] R. Munns and R. E. Sharp, “Involvement of Abscisic Acid in Controlling Plant Growth in Soils of Low Water Potential,” Australian Journal of Plant Physiology, Vol. 20, No. 5, 1993, pp. 425-437. doi:10.1071/PP9930425
[30] A. Christmann, E. W. Weiler, E. Steudle and E Grill, “A Hydraulic Signal in Root-to-Shoot Signalling of Water Shortage,” The Plant Journal, Vol. 52, No. 1, 2007, pp. 167-174. doi:10.1111/j.1365-313X.2007.03234.x
[31] H. Lambers, F. S. Chapin and T. L. Pons, “Plant Physiological Ecology,” Springer-Verlag, New York, 2008. doi:10.1007/978-0-387-78341-3
[32] N. M. Holbrook, V. R. Shashidar, R. A. James and R. Munns, “Stomatal Control in Tomato with ABA-Deficient Roots: Response of Grafted Plants to Soil Drying,” Journal of Experimental Botany, Vol. 53, No. 373, 2002, pp. 1503-1514. doi:10.1093/jexbot/53.373.1503
[33] C. J. Soar, J. Speirs, S. M. Maffei, A. B. Penrose, M. G. McCarthy and B. R. Loveys, “Grape Vine Varieties Shiraz and Grenache Differ in Their Stomatal Response to VPD: Apparent Links with ABA Physiology and Gene Expression in Leaf Tissue,” Australian Journal of Grape and Wine Research, Vol. 12, No. 1, 2006, pp. 2-12. doi:10.1111/j.1755-0238.2006.tb00038.x
[34] B. Bondada, “Anomalies in Structure, Growth Characteristics, and Nutritional Composition as Induced by 2, 4-D Drift Phytotoxicity in Grapevine (Vitis vinifera L.) Leaves and Clusters,” Journal of the American Society for Horticultural Science, Vol. 136, No. 3, 2011, pp. 165-176.
[35] B. Bondada, “Micromorpho-Anatomical Examination of 2, 4-D Phytotoxicity in Grapevine (Vitis vinifera L.) Leaves,” Journal of Plant Growth Regulation, Vol. 30, No. 2, 2011, pp. 185-198. doi:10.1007/s00344-010-9183-7
[36] J. Flexas, M. Baron, J. Bota, J. M. Ducruet, A. Galle, J. Galmes, M. Jimenez, A. Pou, M. Ribas-Carbo, C. Sajnani, M. Tomas and H. Medrano, “Photosynthesis Limitations during Water Stress Acclimation and Recovery in the Drought-Adapted Vitis Hybrid Richter-110 (V. berlandieri × V. rupestris),” Journal of Experimental Botany, Vol. 60, No. 8, 2009, pp. 2361-2377. doi:10.1093/jxb/erp069
[37] S. C. Wong, I. R. Cowan and G. D. Farquhar, “Stomatal Conductance Correlates with Photosynthetic Capacity,” Nature, Vol. 282, 1979, pp. 424-426. doi:10.1038/282424a0
[38] I. Perrone, C. Pagliarani, C., Lovisolo, W. Chitarra, F. Roman and A. Schubert, “Recovery from Water Stress Affects Grape Leaf Petiole Transcriptome,” Planta, Vol. 235, 2012, pp. 1383-1396. doi:10.1007/s00425-011-1581-y
[39] M. M. Chaves and M. L. Rodrigues, “Photosynthesis and Water Relations of Grapevines Growing in Portugal. Response to Environmental Factors,” In: J. D. Tenhunen, et al., Eds., Plant Response to Stress. Functional Analysis in Mediterranean Ecosystems, NATO AS1 Series G, Springer Verlag, Berlin, Vol. 15, 1987, pp. 379-90.
[40] M. E. Westgate and J. S. Boyer, “Osmotic Adjustment and Inhibition of Leaf, Root, Stem, and Silk Growth at low Water Potentials in Maize,” Planta, Vol. 164, No. 4, 1985, pp. 540-549. doi:10.1007/BF00395973
[41] M. C. Ruiz-Sanchez, R. Domingo, R. Save, C. Biel and A. Torrecillas, “Effect of Water Stress and Rewatering on Leaf Water Relations of Lemon Plants,” Biologia Plantarum, Vol. 39, No. 4, 1997, pp. 623-631. doi:10.1023/A:1000943218256
[42] R. E. Sharp and M. E. Lenoble, “ABA, Ethylene and the Control of Shoot and Root Growth under Water Stress,” Journal of Experimental Botany, Vol. 53, No. 366, 2002, pp. 33-37. doi:10.1093/jexbot/53.366.33
[43] S. K. Roberts and B. N. Snowman, “The Effects of ABA on Channel Mediated K+ Transport across Higher Plant Roots,” Journal of Experimental Botany, Vol. 51, No. 350, 2000, pp. 1585-1594. doi:10.1093/jexbot/51.350.1585
[44] H. Jones, R. A. Leigh, A. D. Tomos and R. G. Wyn Jones, “The Effect of Abscisic Acid on Cell Turgor Pressures, Solute Content and Growth of Wheat Roots,” Planta, Vol. 170, No. 2, 1987, pp. 257-262. doi:10.1007/BF00397896
[45] B. Parent, C. Hachez, E. Redondo, T. Simonneau, F. Chaumont and F. Tardieu, “Drought and Abscisic Acid Effects on Aquaporin Content Translate into Changes in Hydraulic Conductivity and Leaf Growth Rate: A Trans-Scale Approach,” Plant Physiology, Vol. 149, No. 4, 2009, pp. 2000-2012. doi:10.1104/pp.108.130682
[46] C. Lovisolo, I. Perrone, W. Hartung and A. Schubert, “An Abscisic Acid-Related Reduced Transpiration Promotes Gradual Embolism Repair When Grapevines Are Rehydrated after Drought,” New Phytologist, Vol. 180, No. 3, 2008, pp. 642-651. doi:10.1111/j.1469-8137.2008.02592.x
[47] M. A. Matthews and M. M. Anderson, “Fruit Ripening in Vitis vinifera L.: Responses to Seasonal Water Deficits,” American Journal of Enology and Viticulture, Vol. 39, No. 4, 1988, pp. 313-320.
[48] M. D. Greenspan, H. R. Schultz and M. A. Matthews, “Field Evaluation of Water Transport in Grape Berries during Water Deficits,” Physiologia Plantarum, Vol. 97, No. 1, 1996, pp. 55-62. doi:10.1111/j.1399-3054.1996.tb00478.x
[49] M. Keller, J. P. Smith and B. R. Bondada, “Ripening Grape Berries Remain Hydraulically Connected to the Shoot,” Journal of Experimental Botany, Vol. 57, No. 11, 2006, pp. 2577-2587. doi:10.1093/jxb/erl020
[50] S. Rogiers, D. H. Greer, J. M. Hatfield, B. A. Orchards and M. Keller, “Solute Transport into Shiraz Berries during Development and Late-Ripening Shrinkage,” American Journal of Enology and Viticulture, Vol. 57, No. 1, 2006, pp. 73-80.
[51] M. D. Greenspan, K. A. Shackel and M. A. Matthews, “Developmental Changes in the Diurnal Water Budget of the Grape Berry Exposed to Water Deficits,” Plant, Cell and Environment, Vol. 17, No. 7, 1994, pp. 811-820. doi:10.1111/j.1365-3040.1994.tb00175.x
[52] G. Roby and M. A. Matthews, “Relative Proportions of Seed, Skin and Flesh, in Ripe Berries from Cabernet Sauvignon Grapevines Grown in a Vineyard Either Well Irrigated or under Water Deficit,” Australian Journal of Grape and Wine Research, Vol. 10, No. 1, 2004, pp. 74-82. doi:10.1111/j.1755-0238.2004.tb00009.x
[53] B. R. Bondada, D. M. Oosterhuis, J. B. Murphy and K. S. Kim, “Effect of Water Stress on the Epicuticular Wax Composition and Ultrastructure of Cotton (Gossypium hirsutum L.) Leaf, Bract, and Boil,” Environmental and Experimental Botany, Vol. 36, No. 1, 1996, pp. 61-69. doi:10.1016/0098-8472(96)00128-1
[54] S. D. Castellarin, M. A. Matthews, G. Di Gaspero and G. A. Gambetta, “Water Deficits Accelerate Ripening and Induce Changes in Gene Expression Regulating Flavonoid Biosynthesis in Grape Berries,” Planta, Vol. 227, No. 1, 2007, pp. 101-112. doi:10.1007/s00425-007-0598-8
[55] H. G. Jones and K. H. Higgs, “Surface Conductance and Water Balance of Developing Apple (Malus pumila Mill.) Fruits,” Journal of Experimental Botany, Vol. 33, No. 132, 1982, pp. 67-77. doi:10.1093/jxb/33.1.67
[56] L. M. McFadyen, R. J. Hutton and E. W. R. Barlow, “Effects of Crop Load in Fruit Water Relations and Fruit Growth in Peach,” Journal of Horticultural Science, Vol. 71, 1996, pp. 469-480.
[57] B. R. Bondada, M. A. Matthews and K. A. Shackel, “Functional Xylem Exists in Post Veraison Grape Berry,” Journal of Experimental Botany, Vol. 56, No. 421, 2005, pp. 2949-2957. doi:10.1093/jxb/eri291
[58] J. Tilbrook and S. D. Tyerman, “Cell Death in Grape Berries: Varietal Differences Linked to Xylem Pressure and Berry Weight Loss,” Functional Plant Biology, Vol. 35, No. 3, 2008, pp. 173-184. doi:10.1071/FP07278
[59] G. L. Creasy and P. B. Lombard, “Vine Water Stress and Peduncle Girdling Effects on Pre- and Post-Veraison Grape Berry Growth and Deformability,” American Journal of Enology and Viticulture, Vol. 44, No. 2, 1993, pp. 193-197.
[60] W. Van Ieperen, V. S. Volkov and U. Van Meeteren, “Distribution of Xylem Hydraulic Resistance in Fruiting Truss of Tomato Influenced by Water Stress,” Journal of Experimental Botany, Vol. 54, No. 381, 2003, pp. 317-324. doi:10.1093/jxb/erg010
[61] G. Hall, B. R. Bondada and M. Keller, “Loss of Rachis Cell Viability Is Associated with Ripening Disorders in Grapes,” Journal of Experimental Botany, Vol. 62, No. 3, 2011, pp. 1145-1153. doi:10.1093/jxb/erq355
[62] B. R. Bondada and M. Keller, “Morpho-Anatomical Symptomatology and Osmotic Behavior of Grape Berry Shrivel,” Journal of the American Society for Horticultural Science, Vol. 137, No. 1, 2012, pp. 20-30.
[63] B. R. Bondada and M. Keller, “Not All Shrivels Are Created Equal—Morpho-Anatomical and Compositional Characteristics Differ among Different Shrivel Types That Develop during Ripening of Grape (Vitis vinifera L.) Berries,” American Journal of Plant Sciences, Vol. 3, 2012, (In Press). doi:10.4236/ajps.2012.37105
[64] M. Krasnow, M. A. Matthews and K. A. Shackel, “Evidence for Substantial Maintenance of Membrane Integrity and Cell Viability in Normally Developing grape (Vitis vinifera L.) Berries throughout Development,” Journal of Experimental Botany, Vol. 59, No. 4, 2008, pp. 849-859. doi:10.1093/jxb/erm372

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.