Share This Article:

Conformational and Bonding Analysis of C2H42+

Abstract Full-Text HTML Download Download as PDF (Size:718KB) PP. 176-181
DOI: 10.4236/ojpc.2012.23023    4,330 Downloads   6,853 Views  


In this report, different models of bonding and structure such as Lewis, VSEPR, Ligand close packing (LCP), VB, qualitative MO and QTAIM have been applied to analyze the Bonds and structures of two equilibrium geometries (planar D2h and perpendicular D2d) of C2H42+. The geometries were optimized at near RHF and MP2 limit using ccpVTZ basis set. While the above bonding models are successfully applied for predicting the low energy isomers of molecules, prior to solving the Schr?dinger equation, it is shown that the cited models fail in predicting the existence of perpendicular, D2d form of C2H42+. In this regard the interpretations of significant energetic stabilization of D2d form over planar isomer has also been revisited. This is attributed to the hidden effect of the Pauli Exclusion principle.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Hossein Shafiee, "Conformational and Bonding Analysis of C2H42+," Open Journal of Physical Chemistry, Vol. 2 No. 3, 2012, pp. 176-181. doi: 10.4236/ojpc.2012.23023.


[1] K. Lammertsma, M. Barazaghi, G. A. Olah, J. A. Pople, A. J. Kos and P. V. R. Schleyer, “Carbodications. 6. The Ethylene Dication: A Theoretical Study of the Ethylene Dication (C2H42+) Potential-Energy Surface,” Journal of the American Chemistry Society, Vol. 105, No. 16, 1983, pp. 5252-5257. doi:10.1021/ja00354a012
[2] G. Frenking, “Substituted Ethylene Dications: Planar or Perpendicular?” Journal of the American Chemistry Society, Vol. 113, No. 7, 1991, pp. 2476-2481. doi:10.1021/ja00007a020
[3] T. Ohwada and K. Shudo, “Substituted Ethylene Dications. Structures of Phenylmethyl Cations Substituted with an Electron-Withdrawing Group on the Cation Center,” Journal of the American Chemistry Society, Vol. 111, No. 1, 1989, pp. 34-40. doi:10.1021/ja00183a006
[4] L.A. Eriksson, S. Lunell and R. J. Boyd, “Electronic Structure Calculations of Hydrocarbon Radical Cations: A Density Functional Study,” Journal of the American Chemistry Society, Vol. 115, No. 15, 1993, pp. 6896-6900. doi:10.1021/ja00068a055
[5] M. L. Abrams, E. F. Valeev, C. D. Sherrill and T. D. Crawford, “The Equilibrium Geometry, Harmonic Vibrational Frequencies, and Estimated ab Initio Limit for the Barrier to Planarity of the Ethylene Radical Cation,” Journal of Physical Chemistry A, Vol. 106, No. 11, 2002, pp. 2671-2675. doi:10.1021/jp0134143
[6] R. V. I. Rauk, “Orbital Interaction Theory of Organic Chemistry,” Wiley Inter-Science, 2001.
[7] C. J. Cramer, “Essentials of Computational Chemistry Theories and Models,” Wiley, 2008.
[8] T. H. Dunning Jr., “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen,” Journal of Chemical Physics, Vol. 90, No. 2, 1989, pp. 1007-1023. doi:10.1063/1.456153
[9] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, Journal of Computational Chemistry, Vol. 14, 1993, pp. 1347-1363
[10] F. Biegler-K?nig, “Calculation of Atomic Integration Data,” Journal of Computational Chemistry, Vol. 21, No. 12, 2000, pp. 1040-1048. doi:10.1002/1096-987X(200009)21:12<1040::AID-JCC2>3.0.CO;2-8
[11] F. Biegler-K?nig, J. Sch?nbohm and D. Bayles, “AIM 2000—A Program to Analyze and Visualize Atoms in Molecules,” Journal of Computational Chemistry, Vol. 22, 2001, pp. 545-559.
[12] P. L. A. Popelier and R. G. A. Bone, “MORPHY99,” A Topological Analysis Program, UMIST, Engl, EU.
[13] P. L. A. Popelier, “MORPHY, a Program for an Automated ‘Atoms in Molecules’ Analysis,” Computer Physics Communications, Vol. 93, No. 2-3, 1996, pp. 212-240. doi:10.1016/0010-4655(95)00113-1
[14] G. A. Zhurko and D. A. Zhurko, “ChemCraft, Tool for Treatment of the Chemical Data.”
[15] P. L. A. popelier and R. J. Gillespie, “Chemical Bonding and Molecular Geomerty from Lewis to Electron Dnsities,” Oxford University Press, Oxford, 2001.
[16] R. J. Gillespie and I. Hargittai, “The VSEPR Model of Geometry,” Allyn & Bacon, Boston, 1991.
[17] D. A. McQuarrie, “Quantum Chemistry,” Oxford University Press, Oxford, 1983.
[18] B. Gimarc, “Application of Qualitative Molecular Orbital Theory,” Accounts of Chemical Research, Vol. 7, No. 11, 1974, pp. 384-392. doi:10.1021/ar50083a004
[19] R. F. W. Bader, “Atoms in Molecules: A Quantum Theory,” Clarendon Press, Oxford, 1990.
[20] R. F. W. Bader, “Chem 106 Seminar #2,” Case Western Reserve University, 2008.
[21] R. F. W. Bader, R. J. Gillespie and P. J. MacDougall, “A Physical Basis for the VSEPR Model of Molecular Geometry,” Journal of the American Chemistry Society, Vol. 110, No. 22, 1988, pp. 7329-7336. doi:10.1021/ja00230a009
[22] P. L. A. Poplier, “Atoms in Molecules: An Introductory,” Prentice Hall, Upper Saddle River, 2000.
[23] S. J. Lennard-Jones, “New Ideas in Chemistry,” Advanced Science, Vol. 11, No. 54, 1954, p. 136.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.