Aminolysis of 1-(1-Hydroxybenzotriazolyl)-2,4-dinitrobenzene and 2-(1-Hydroxybenzotriazolyl)-5-nitropyridine

Abstract

The reaction 1-(1-hydroxybenzotriazolyl)-2,4-dinitrobenzene 1 and 2-(1-hydroxybenzotriazolyl)-5-nitro-pyridine 2 with amines undergoes amination followed by elimination of the 1-hydroxyl benzotriazolyl anion. The kinetic data for the reaction of 1 and 2 with Mo, CHA and An in MeOH and AN proceeded by uncatalysed mechanism in which the rate limiting step is the leaving group departure, whereas the reaction with Mo in toluene proceeded by uncatalysed mechanism in which the formation of the zwitterionic intermediate is the rate determining step. While the reactions of 1 with CHA and An and the reaction of 2 with CHA in toluene proceeded by SB mechanism in which the rate determining step is the proton transfer process. The reactions of 1 and 2 with Mo in the three solvents and with CHA and An in MeOH and AN is greatly depended on the stability of the zwitterionic intermediate. The effect of ring activation is due to the ground state stabilization and the more efficient delocalization of the negative charge with a nitro group than with a ring-nitrogen in the transition state. The low activation enthalpies ΔH# and the highly negative activation entropies ΔS# are due to the intramolecular hydrogen bonding with the ammonio hydrogen present in the transition state.

Share and Cite:

S. N. Khattab, M. A. H. Kharaba, A. El-Hawary, A. El-Faham and E. A. Hamed, "Aminolysis of 1-(1-Hydroxybenzotriazolyl)-2,4-dinitrobenzene and 2-(1-Hydroxybenzotriazolyl)-5-nitropyridine," Open Journal of Physical Chemistry, Vol. 2 No. 3, 2012, pp. 156-168. doi: 10.4236/ojpc.2012.23021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Miller, “Aromatic Nucleophilic Substitution,” Elsevier, New York, 1969, p. 18.
[2] F. Terrier, “Nucleophilic Aromatic Displacement,” The Influence of the Nitro Group, VCH, New York, 1991.
[3] E. Buncel, M. R. Crampton, M. J. Sttrauss and F. Terrier, “Electron Deficient Aromatic and Anionic Sigma Complexes,” Elsevier, Amsterdam, 1984.
[4] M. N. Glukhovtsev, R. D. Bach and S. Laiter, “Single-Step and Multistep Mechanisms of Aromatic Nucleophilic Substitution of Halobenzenes and Halonitrobenzenes with Halide Anions: Ab initio Computational Study,” Journal of Organic Chemistry, Vol. 62, No. 12, 1997, pp. 4036-4046. doi:10.1021/jo962096e
[5] A. Patrícia Bento, M. Solà and F. Matthias Bickelhaupt, “Ab initio and DFT Benchmark Study for Nucleophilic Substitution at Carbon (SN2@C) and Silicon (SN2@Si),” Journal of Computational Chemistry, Vol. 26, No. 14, 2005, pp. 1497-1504. doi:10.1002/jcc.20261
[6] N. S. Nudelman, “The Chemistry of Amino,” Nitroso, Nitro and Related Groups, Wiley & Sons, London, 1996.
[7] S. Park and S. Lee, “Effects of Ion and Protic Solvent on Nucleophilic Aromatic Substitution (SNAr) Reactions,” Bulletin of the Korean Chemical Society, Vol. 31, No. 9, 2010, pp. 2571-2573. doi:10.5012/bkcs.2010.31.9.2571
[8] N. Cheron, L. El Kaim, L. Grimaud and P. Fleurat-lessard, “Evidences for the Key of Hydrogen Bonds in Nucleophilic Aromatic Substitution Reactions,” Chemistry: A European Journal, Vol. 17, No. 52, 2011, pp. 14929-14934. doi:10.1002/chem.201102463
[9] J. Burdon and I. W. Parsons, “A Recent Attempt to Apply Frontier Orbital Theory to Nucleophilic Aromatic Substitution,” Journal of the American Chemical Society, Vol. 99, No. 23, 1977, pp. 7445-7447. doi:10.1021/ja00465a007
[10] I. Fernández, G Frenking and E Uggerud, “Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions,” Journal of Organic Chemistry, Vol. 75, No. 9, 2010, pp. 2971-2980. doi:10.1021/jo100195w
[11] S. L. Edward and M. I. Joan, “The Reactions of Diazonium Salts with Nucleophiles. X. A Tracer Demonstration of the Reversible Step in Diazonium Ion Hydrolysis,” Journal of the American Chemical Society, Vol. 86, No. 1, 1964, pp. 32-34. doi:10.1021/ja01055a009
[12] J. F. Bunnett, “Mechanism and Reactivity in Aromatic Nucleophilic Substitution Reactions,” Quarterly Review of the Chemical Society, Vol. 12, No. 1, 1958, pp. 1-16. doi:10.1039/qr9581200001
[13] F. Pietra, “Mechanisms for Nucleophilic and Photonucleophilic Aromatic Substitution Reactions,” Quarterly Review of the Chemical Society, Vol. 23, No. 4, 1969, pp. 504-521. doi:10.1039/qr9692300504
[14] M. K. Stern, F. D. Hileman and J. K. Bashkin, “Amination of Nitrobenzene via Nucleophilic Aromatic-Substitution for Hydrogen-Direct Coupling of Aniline and Nitrobenzene,” Journal of the American Chemical Society, Vol. 114, No. 23, 1992, pp. 9237-9238. doi:10.1021/ja00049a095
[15] N. B. Chapman, J. Shorter and K. J. Toyne, “High Coupled Orbitals,” Journal of the American Chemical Society, Vol. 98, 1976, pp. 6702-6710.
[16] G. Guanti, G. Petrillo and S. Thea, “Aromatic Nucleophilic Substitution Reactions in the Naphthalene Series. A Kinetic Study of the Reaction of 2,3-Dinitronaphthalene with Piperidine in Benzene,” Tetrahedron, Vol. 38, No. 4, 1982, pp. 505-511. doi:10.1016/0040-4020(82)80094-X
[17] D. Spinelli and G. Consiglio, “Linear Free Energy Relationships in the Thiophene series. Part I. Leaving Group Effect in piperidino-substitution in Methanol of some 2-L-3-Nitro-5-Thiophene,” Journal of the Chemical Society, Perkin Transactions 2, No. 10, 1975, pp. 989-993. doi:10.1039/p29750000989
[18] J. F. Bunnett and R. E. Zahler, “Aromatic Nucleophilic Substitution Reactions,” Chemical Reviews, Vol. 49, No. 2, 1951, pp. 273-412. doi:10.1021/cr60153a002
[19] A. J. Parker, “Protic-Dipolar Aprotic Solvent Effects on Rates of Bimolecular Reactions,” Chemical Reviews, Vol. 69, No. 1, 1969, pp. 1-32. doi:10.1021/cr60257a001
[20] L. Forlani, C. Boga and M. Forconi, “Kinetics and Mechanism of Reactions between 2,4,6-Trinitrofluorobenzene and Alcohols,” Journal of the Chemical Society, Perkin Transactions 2, No. 7, 1999, pp. 1455-1458. doi:10.1039/a900436j
[21] S. K. Dotterer and R. L. Harris, “Study of Nucleophilic Aromatic-Substitution,” Journal of Organic Chemistry, Vol. 53, No. 4, 1988, pp. 777-779. doi:10.1021/jo00239a015
[22] A. C. Arvanites and D. W. Boerth, “Modeling of the Mechanism of Nucleophilic Aromatic Substitution of Fungicide Chlorothalonil by Glutathione,” Journal of Molecular Modeling, Vol. 7, No. 7, 2001, pp. 245-256. doi:10.1007/s008940100032
[23] S. Tascioglu and M. B. Gurdere “Elucidation of the Mechanism of an Aromatic Substitution Reaction by the Utilization of Micelles as Mechanistic Probes,” Colloids and Surfaces A, Vol. 173, 2000, pp. 101-107.
[24] M. R. Crampton, T. A. Emokpae, C. Isanbor, A. S. Batsanov, J. A. K. Howard and R. Mondal, “Effects of Ortho- and Para-Ring Activation on the Kinetics of SNAr Reactions of 1-Chloro-2-nitro and 1-Penoxy-2-nitrobenzenes with Aliphatic Amines in Acetonotrile,” European Journal of Organic Chemistry, Vol. 2006, No. 5, 2006, pp. 1222-1230. doi:10.1002/ejoc.200500774
[25] C. Isnabor and T. A. Emokpae, “Anilinoysis of Nitro-Substituted Diphenyl Ethers in Acetonitrile: The Effect of Some Ortho-Substituents on the Mechanism of SNAr Reactions,” International Journal of Chemical Kinetics, Vol. 42, 2009, pp. 37-49.
[26] R. A. Akpojivi, T. A. Emopkae and J. Hirst, “The Origin of the Dichotomy of Amine Effects in Aromatic Nucleophilic Substitution Reactions,” Journal of the Chemical Society, Perkin Transactions 2, No. 3, 1994, pp. 443-449.
[27] J. F. Bunnett and G. Davis, “Kinetics of Reactions of 2,4-Dinitrochlorobenzene with Some Familiar Nucleophilic Reagents,” Journal of the American Chemical Society, Vol. 76, No. 11, 1954, pp. 3011-3015. doi:10.1021/ja01640a044
[28] C. E. S. Alvar and N. S. Nudelman, “Unusual Solvent Effects in the Reactions of 1-Halo-2,4-dinitrobenzenes and Aniline in Aprotic and Dipolar-Aprotic Solvents. Effects of Aggregates,” ARKIVOC, 2003, pp. 95-106.
[29] C. E. S. Alvaro, M. C. Savini, V. Nicotra, J. S. Yankelevich and N. S. Nudelman, “Reaction of 2,4-Dinitrochlorobenzene with Aromatic Amines in Toluene: Effect of Nucleophile Structure,” Molecules, Vol. 5, No. 3, 2000, pp. 401-402. doi:10.3390/50300401
[30] M. F. Fathalla, M. F. Ibrahim and E. A. Hamed, “Kinetics of Alkaline Hydrolysis of 2-Thioaryl-3,5-dinitropyridine Derivatives in 50% v/v DMSO-Water,” Journal of Chemical Research, Vol. 2004, No. 2, 2004, pp. 150-151.
[31] H. O. H. Al-Howsaway, M. F. Fathalla, A. A. El. Bardan and E. A. Hamed, “Reaction of 4-Chloro-3,5-dinitrobenzotrifluoride with Aniline Derivatives. Substituent Effects,” Journal of Chemical Research, Vol. 2007, No. 9, 2007, pp. 509-512.
[32] M. F. Fathalla, T. S. Kassem and E. A. Hamed, “Kinetics of the Reaction between Methyl-2,4-dichloro-3,5-dinitro Benzoate and Piperidine: Solvent Effect,” Indian Journal of Chemistry, Vol. 47A, 2008, pp. 1348-1354.
[33] N. M. El-Mallah, S. A. Senior, G. M. Nabil, M. Sh. Ramadan and E. A. Hamed, “Effect of Acetonitrile-Water Mixtures on the Reaction of Dinitrochlorobenzene and Dinitrochlorobenzotriflouride with Hydroxide Ion,” International Journal of Chemical Kinetics, Vol. 42, 2010, pp. 453-463.
[34] M. A. H., Kharaba, A. M. G. Nassar, A. A. Youssef and H. Faid-Allah, “A Comparative Kinetic Investigation of Some Nucleophilic Aromatic Displacements,” Polish Journal of Chemistry, Vol. 65, 1991, pp. 1029-1034.
[35] E. A. Hamed, “Nucleophilic Substitution at the Pyridine Ring. Kinetics of the Reaction of 2-Chloro-3,5-dinitropyridine with Arylthiolates in Methanol,” International Journal of Chemical Kinetics, Vol. 29, No. 7, 1997, pp. 515-521. doi:10.1002/(SICI)1097-4601(1997)29:7<515::AID-KIN5>3.0.CO;2-X
[36] E. A. Hamed, A. A. El-Bardan, E. F. Saad, G. A. Gohar and G. M. Hassan, “Nucleophilic Substitution at the Pyridine Ring. Conformational Preference of the Products and Kinetics of the Reactions of 2-Chloro-3-Nitro and 2-Chloro-5-nitropyridines with Arenethiolates,” Journal of the Chemical Society, Perkin Transactions 2, No. 11, 1997, pp. 2415-2421. doi:10.1039/a701902e
[37] E. A. Hamed, “Nucleophilic Substitutions at the Pyridine Ring: Kinetics of the Reaction of 2-Chloro-3-nitro and 2-Chloro-5-nitropyridines with Piperidine and Morpholine in Methanol and Benzene,” International Journal of Chemical Kinetics, Vol. 29, 1997, pp. 599-605. doi:10.1002/(SICI)1097-4601(1997)29:8<599::AID-KIN5>3.0.CO;2-P
[38] N. M. El-Mallah, E. A. Hamed and A. A. El-Bardan, “Kinetics of the Reaction of 2,4-Dinitrophenyl-4'-substituted Sulfones with Morpholine in Methanol,” Egyptian Journal of Chemistry, Vol. 38, 1995, pp. 319-328.
[39] E. A. Hamed, A. A. El-Bardan, E. F. Saad and M. F., Fathalla, “Kinetics of the Reaction of 2,4-Dinitrophenyl aryl Sulphides Sulphoxides and Sulphones with Hydroxide Ion in 80%(v/v) Ethanol-Water,” Egyptian Journal of Chemistry, Vol. 43, 2000, pp. 177-185.
[40] A. A. El-Bardan, “Kinetics of the Reaction of 2-Chloro-3-nitro- and 2-Chloro-5-nitropyridines with Aryloxide Ions in Methanol,” Journal of Physical Organic Chemistry, Vol. 12, No. 4, 1999, pp. 347-353. doi:10.1002/(SICI)1099-1395(199904)12:4<347::AID-POC134>3.0.CO;2-G
[41] F. El. M. El. Hegazy, S. Z. Abdel Fathah, E. A. Hamed and S. M. Sharaf, “Kinetics of the Reaction of 2-Chloro- 3,5-dinitropyridine with Meta- and Para-Substituted Anilines in Methanol,” Journal of Physical Organic Chemistry, Vol. 13, No. 9, 2000, pp. 549-554. doi:10.1002/1099-1395(200009)13:9<549::AID-POC297>3.0.CO;2-5
[42] M. F., Fathalla and E. A. Hamed, “Kinetics of the Reaction between Methyl-2,4-dichloro-3,5-dinitrobenzoate and Piperidine, Piprazine, Morpholine and Thiomorpholine in Methanol and Benzene,” Journal of Chemical Research, 2006, pp. 413-416.
[43] Sh. N. Khattab, S. Y. Hassan, E. A. Hamed and A. El-Faham, “Synthesis and Morpholinolysis of N,N-Diethyl Carbamate Derivatives of 4-HOAt, 7-HOAt and HOBt,” Journal of Chemical Research, 2007, pp. 247-251.
[44] B. H. M. Asghar, M. F. Fathalla and E. A. Hamed, “Solvent and Substituent Effects on the Reaction of 2- and 4-Chloro-3,5-dinitrobenzotrifluorides with Substituted Anilines,” International Journal of Chemical Kinetics, Vol. 41, No. 12, 2009, pp. 777-786. doi:10.1002/kin.20455
[45] Sh. N. Khattab, S. Y. Hassan, E. A. Hamed, F. Albericio and A. El-Faham, “Synthesis and Aminolysis of N,N-Diethyl Carbamic Ester of HOBt Derivatives,” Bulletin of the Korean Chemical Society, Vol. 31, No. 1, 2010, pp. 75-81. doi:10.5012/bkcs.2010.31.01.075
[46] J. J. Blanksma and G. F. Wilmink, “Action of Cyclohexylamine on Aromatic Halogeno-nitro-compounds,” Recueil des Travaux Chimiques des Pays-Bas, Vol. 66, No. 7, 1947, pp. 445-453. doi:10.1002/recl.19470660710
[47] C. F. Bernasconi and P. Schmid, “Base Catalysis of the Reaction of Morpholine with 2,4-Dinitrophenyl Phenyl Ether in 10 Percent Dioxane-90 Percent Water,” Journal of Organic Chemistry, Vol. 32, No. 10, 1967, pp. 2953-2956. doi:10.1021/jo01285a003
[48] R. H. de. Rossi, A. B. Pierini and R. A. Rossi, “Kinetics of the Reaction of Weakly Basic Amines with Activated Aromatic Substrates. Reaction of Imidazole and Aniline with 1-Fluoro-2,4-dinitrobenzene,” Journal of Organic Chemistry, Vol. 43, No. 15, 1978, pp. 2982-2986. doi:10.1021/jo00409a010
[49] N. S. Nudelman and S. B. Cerdeira, “1H and 13C NMR Studies of Substituted Nitropyridines and Nitrobenzenes,” Magnetic Resonance in Chemistry, Vol. 24, 1986, pp. 507-511. doi:10.1002/mrc.1260240607
[50] Sh. N. Khattab, E. A. Hamed, F. Albericio and A. El-Faham, “Synthesis and Aminolysis of 2,4-Dinitrophenyl and 5-Nitropyridine N-Hydroxy Oxime Derivatives,” Bulletin of the Chemical Society Japan, Vol. 84, No. 6, 2011, pp. 633-639. doi:10.1246/bcsj.20110015
[51] A. A. El-Bardan, G. M. El-subruiti, F. M. El-Hegazy and E. A. Hamed, “Kinetics and Reactivity of Substituted Anilines with 2-Chloro-5-nitropyridine in Dimethyl Sulfoxide and Dimethylformamide,” International Journal of Chemical Kinetics, Vol. 34, 2002, pp. 654-650. doi:10.1002/kin.10053
[52] M. F. Fathalla and Sh. N. Khattab, “Spectrophotometric Determination of pKa’s of 1-Hydroxybenzotriazole and Oxime Derivatives in 95% Acetonitrile-Water,” Journal of the Chemical Society of Pakistan, Vol. 33, 2011, pp. 324-332.
[53] C. F. Bernasconi and P. Schmid, “The Second-Order Coefficient for Formation of. 2,4-Dinitrophenol from N-(2,4-Dinitrophenyl)morpholine,” Elwood and Gates, Vol. 32, 1967, pp. 2956-2959.
[54] R. A. Chamberlain and M. R. Crampton, “Mechanism of Base Catalysis in the Reactions of Phenyl Aryl Ethers with Aliphatic Amines in Dimethyl Sulfoxide,” Journal of the Chemical Society, Perkin Transactions 2, No. 10, 1995, pp. 1831-1838. doi:10.1039/p29950001831
[55] R. A. Chamberlain, M. R. Crampton and I. A. Robotham, “Kinetic and Equilibrium Studies of σ-Adduct Formation and Nucleophilic Substitution in the Reactions of Morpholine with 1,3,5-Trinitrobenzene and Some Phenyl Aryl Ethers in Dimethyl Sulphoxide,” Journal of Physical Organic Chemistry, Vol. 9, No. 3, 1996, pp. 152-158. doi:10.1002/(SICI)1099-1395(199603)9:3<152::AID-POC769>3.0.CO;2-4
[56] M. F. Fathalla, M. F. Ibrahim and E. A. Hamed, “Kinetics of Alkaline Hydrolysis of 2-Thioaryl-3,5-dinitropyridine Derivatives in 50 % v/v DMSO-Water,” Journal of Chemical Research, Vol. 2004, No. 2, 2004, pp. 150-151.
[57] T. A. Emokpae, P. U. Uwakwe and J. Hirst, “The Reactions of Aniline, N-Methylaniline, N-Butylamine and Piperidine with Some Nitroaryl Phenyl Ethers in Methanol,” Journal of the Chemical Society, Perkin Transactions 2, No. 12, 1990, pp. 2191-2195. doi:10.1039/p29900002191
[58] W. Eggiman, P. Schmid and H. Zollinger, “Steric Effects in Nucleophilic Aromatic Substitution Reactions with Aromatic Amines on Nucleophilic Aromatic Substitution,” Helvetica Chimica Acta, Vol. IV, 1975, pp. 257-268. doi:10.1002/hlca.19750580132
[59] J. F. Bunnett and G. Davis, “The Mechanism of Aminolysis of Esters,” Journal of the American Chemical Society, Vol. 82, No. 3, 1960, pp. 665-674. doi:10.1021/ja01488a043
[60] J. Hirst and T. O. Bankole, “Kinetics of Some of the Reactions of 2-Fluoro-and 2-Chloro-5-nitropyridine and 1-Fluoro- and 1-Chloro-2,4-dinitrobenzenes with Aniline, Piperidine in Acetone and Methanol,” Journal of the Chemical Society B, No. 0, 1969, pp. 848-952.
[61] W. K?nig and R. Geiger, “N-Hydroxyverbindungen Als Katalysatoren für die Aminolyse Aktivierter Ester,” Chemische Berichte, Vol. 106, 1973, pp. 3626-3635.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.