Interaction of N-(2-Methyl Thio Phenyl)-2-Hydroxy-1-Naphthaldimine with Tin Dioxide Nanoparticles: A Spectroscopic Approach

Abstract

The interaction of N-(2-methyl thiophenyl)-2-hydroxy-1-naphthaldimine (NMTHN) with tin dioxide nanoparticles (SnO2 NPs) has been investigated by spectroscopic tools such as absorption and fluorescence spectroscopy. Absorption spectroscopy reveals the formation of ground state complex. Fluorescence spectroscopy has been used to study the signatures of fluorescence quenching. SnO2 NPs are found to quench the intrinsic fluorescence of NMTHN via static and dynamic quenching. The deviation from linearity in the Stern-Volmer plot has been observed.

Share and Cite:

S. Jayaprakash and R. Veerabahu, "Interaction of N-(2-Methyl Thio Phenyl)-2-Hydroxy-1-Naphthaldimine with Tin Dioxide Nanoparticles: A Spectroscopic Approach," American Journal of Analytical Chemistry, Vol. 3 No. 8, 2012, pp. 518-523. doi: 10.4236/ajac.2012.38069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. S. Ningthoujam and S. K. Kulshreshtha, “Nanocrystalline SnO2 from Thermal Decomposition of Tin Citrate Crystal: Luminescence and Raman Studies,” Materials Research Bulletin, Vol. 44, No. 1, 2009, pp. 57-62. doi:10.1016/j.materresbull.2008.04.004
[2] S. G. Ansari, P. Boroojerdian, S. R. Sainker, R. N. Karekar, R. C. Aiyer and S. K. Kulkarni, “Grain Size Effects on H2 Gas Sensitivity of Thick Film Resistor Using SnO2 Nanoparticles,” Thin Solid Films, Vol. 295, No. 1-2, 1997, pp. 271-276. doi:10.1016/S0040-6090(96)09152-3
[3] X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electron Accessibility,” Journal of the American Chemical Society, Vol. 119, No. 30, 1997, pp. 7019-7029. doi:10.1021/ja970754m
[4] W.-Y. Chung, D.-D. Lee and B.-K. Sohn, “Effects of Added TiO2 on the Characteristics of SnO2 Based Thick Film Gas Sensors,” Thin Solid Films, Vol. 221, No. 1-2, 1992, pp. 304-310. doi:10.1016/0040-6090(92)90832-V
[5] J. Z. Zhang, “Intefacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles,” Journal of Phy- sical Chemistry B, Vol. 104, No. 31, 2000, pp. 7239- 7253. doi:10.1021/jp000594s
[6] S. Ferrere, A. Zaban, and B. A. Gregg, “Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives,” Journal of Physical Chemistry B, Vol. 101, No. 23, 1997, pp. 4490-4493. doi:10.1021/jp970683d
[7] J. F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. L. Cao, X. P. Ai and H. X. Yang, “TiO2 Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells,” Advanced Materials, Vol. 21, No. 36, 2009, pp. 3663-3667.
[8] S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, “Band Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires,” Ad-vanced Functional Materials, Vol. 18, No. 16, 2008, pp. 2411- 2418. doi:10.1002/adfm.200800099
[9] S. Das and P. V. Kamat, “Can H-Aggregates Serve as Light Harvesting Antennae? Triplet-Triplet Energy Transfer between Excited Aggregates and Monomer Thionine in Aerosol-OT Solutions,” Journal of Physical Chemistry B, Vol. 103, No. 1, 1999, pp. 209-215. doi:10.1021/jp983816j
[10] A. Blagus, D. Cincic, T. Friscic, B. Kaitner and V. Stili-novic, “Schiff Bases Derived from Hydroxyaryl Alde-hydes: Molecular and Crystal Structure, Tautomerism, Quinoid Effect, Coordination Compounds,” Macedonian Journal of Chemistry and Chemical Engineering, Vol. 29, No. 2, 2010, pp. 117-138.
[11] H. Unver and T. Nuri Durlu, “Crystal Structure and Conformational Analysis of 1-[N-2-Bromophenyl Naphthal- dimine,” Journal of Molecular Structure, Vol. 655, No. 3, 2003, pp. 369-374. doi:10.1016/S0022-2860(03)00277-1
[12] A. M. Asiri and K. O. Badahdah, “Synthesis of Some New Anils: Part 1. Reaction of 2-Hydroxy-Benzaldehyde and 2-Hydroxy Naphthaldehyde with 2-Aminopyridene and 2-Aminopyrazine,” Molecules, Vol. 12, 2007, pp. 1796-1804.
[13] H. Dincalp, S. Yavuz, O. Hakli, C. Zafer, C. Ozsoy, I. Durucasu and SiddikIcli, “Optical and Photovoltaic Properties of Salicylaldimine Based Azo Ligands,” Journal of photochemistry and Photobiology A: Chemistry, Vol. 210, No. 1, 2010, pp. 8-16. doi:10.1016/j.jphotochem.2009.12.012
[14] P. Manikandan and V. Ramakrishnan, “Spectral Investigations on N-(2-Methyl Thiophenyl) 2-Hydroxy-1-Na- phthaldimine by Silver Nano-particles: Quenching,” Journal of Fluorescence, Vol. 21, No. 2, 2011, pp. 693-699. doi:10.1007/s10895-010-0757-3
[15] I. Bedja, S. Hotchandani and P. V. Kamat, “Preparation and Photochemical Characteri-zation of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2’-bipyridine) (2,2’-bipyridine-4,4’-dicar-boxylic acid) Ruthenium (II) Com-plex,” Journal of Physical Chemistry, Vol. 98, 1994, pp. 4133-4140. doi:10.1021/j100066a037
[16] H. J. Snaith and C. Ducati, “SnO2 Based Dye Sensitized Hybrid Solar Cells Exhibiting near Unity Absorbed Photon to Electron Conversion Efficiency,” Nanoletters, Vol. 10, No. 4, 2010, pp. 1259-1265. doi:10.1021/nl903809r
[17] D. Liu, R. W. Fessenden, G. L. Hug and P. V. Kamat, “Dye Capped Semiconductor Nanoclusters. Role of Back Electron Transfer in the Photosen-sitization of SnO2 Nano- crystallites with Cresyl Violet Aggre-gates,” Journal of Physical Chemistry B, Vol. 101, No. 14, 1997, pp. 2583- 2590. doi:10.1021/jp962695p
[18] C. Nasr, D. Liu, S. Hotchandani and P. V. Kamat, “Dye Capped Semiconductor Nanoclusters. Excited State and Photosensitization Aspects of Rhodamine 6G H-Aggre- gates Bound to SiO2 and SnO2 Colloids,” Journal of Physical Chemistry, Vol. 100, No. 26, 1996, pp. 11054- 11061. doi:10.1021/jp9537724
[19] P. Sangeetha, V. Sasirekha and V. Ramakrishnan, “Micro Raman Investigation of Tin Dioxide Nanostructured Material Based on Annealing Effect,” Journal of Raman Spectroscopy, Vol. 42, No. 8, 2011, pp. 1634-1639.
[20] S. Barazzouk, H. Lee, S. Hotchandani and P. V. Kamat, “Photosensitization Aspects of Pinacyanol H-Aggregates. Charge Injection from Singlet and Triplet Excited States into SnO2 Nanocrystallites,” Journal of Physical Chemistry B, Vol. 104, No. 15, 2000, pp. 3616-3623. doi:10.1021/jp994311b
[21] I.-Y. S. Lee and H. Suzuki, “Quenching Dynamics Promoted by Silver Nanoparticles,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 195, No. 2-3, 2008, pp. 254-260. doi:10.1016/j.jphotochem.2007.10.009
[22] B. Chakraborty and S. Basu, “Interaction of BSA with Proflavin: A Spectroscopic Approach,” Journal of Luminescence, Vol. 129, No. 1, 2009, pp. 34-39. doi.10.1016/j.jlumin.2008.07.012
[23] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd Edition, Springer Science, New York, 2010.
[24] H. M. Suresh Kumar, R. S. Kunabenchi, J. S. Biradar, N. N. Math, J. S. Kadadevarmath and S. R. Inamdar, “Analysis of Fluorescence Quenching of New Indole Derivative by Aniline Using Stern-Volmer Plots,” Journal of Luminescence, Vol. 116, No. 1-2, 2006, pp. 35-42. doi.10.1016/j.jlumin.2005.02.012
[25] A. J. Cox, A. J. DeWeerd and J. Linden, “An Experiment to Measure Mie and Rayleigh Total Scattering cross Sections,” American Journal of Physics, Vol. 70, No. 6, 2002, pp. 620-625. doi:10.1119/1.1466815

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.