Share This Article:

The diffusion and concentration effects of formamide on a TiO2 surface in the presence of a water solvent

Abstract Full-Text HTML Download Download as PDF (Size:1732KB) PP. 313-323
DOI: 10.4236/ns.2012.45044    4,508 Downloads   7,775 Views   Citations


The formamide-titanium oxide interaction mechanism is a research target of great importance for understanding the elementary events of the origin of life: the synthesis of nucleoside bases and formation of biological molecules needed for life. Titanium oxide (TiO2) can act as a strongly adsorbing surface or a catalytic material. In the present study, a comparative molecular dynamics analysis performed to clarify the adsorbing and diffusion properties of liquid formamide on a TiO2 surface in the presence of water molecules. The structural features of the formamide concentration effect (the accumulation of molecules) on a TiO2 surface in the presence and absence of water solvent are cleared up. Modification of the formamide diffusion abilities mediated by a water solvent is observed to correlate with the formamide-water concentration distribution on the surface.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Dushanov, E. , Kholmurodov, K. and Yasuoka, K. (2012) The diffusion and concentration effects of formamide on a TiO2 surface in the presence of a water solvent. Natural Science, 4, 313-323. doi: 10.4236/ns.2012.45044.


[1] Senanayake, S.D. and Idriss, H. (2006) Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 103, 1194-1198. doi:10.1073/pnas.0505768103
[2] Saladino, R., Crestini, C., Costanzo, G. and DiMauro, E. (2004) Advances in the prebiotic synthesis of nucleic acids bases: Implications for the origin of life. Current Organic Chemistry, 8, 1425-1443. doi:10.2174/1385272043369836
[3] Ferris, J.P., Hill, A.R. Jr., Liu, R. and Orgel, L.E. (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381, 59-61. doi:10.1038/381059a0
[4] Ferris, J.P. (1993) Catalysis and prebiotic RNA synthesis. Origins of Life and Evolution of Biospheres, 23, 307-315. doi:10.1007/BF01582081
[5] Huber, C. and W?chtersh?user, G. (1998) Peptides by activation of amino acids with co on (Ni,Fe)S surfaces: Implications for the origin of life. Science, 281, 670-672. doi:10.1126/science.281.5377.670
[6] Kamineni, V.K., Lvov, Y.M. and Dobbins, T.A. (2007) Layer-by-layer nanoassembly of polyelectrolytes using formamide as the working medium. Langmuir, 23, 7423- 7427. doi:10.1021/la700465n
[7] Parmeter, J.E., Schwalke, U. and Weinberg, W.H. (1988) Interaction of formamide with the Ru(001) surface. Journal of the American Chemical Society, 110, 53-62. doi:10.1021/ja00209a008
[8] Muir, J.M.R. and Idriss, H. (2009) Formamide reactions on rutile TiO2(011) surface. Surface Science, 603, 2986- 2990. doi:10.1016/j.susc.2009.08.012
[9] Thiel, P.A. and Madey, T.E. (1987) The interaction of water with solid surfaces: Fundamental aspects. Surface Science Reports, 7, 211-385. doi:10.1016/0167-5729(87)90001-X
[10] Henrich, V.E. (1985) The surfaces of metal oxides. Reports on Progress in Physics, 48, 1481. doi:10.1088/0034-4885/48/11/001
[11] Henrich, V.E. (1979) Ultraviolet photoemission studies of molecular adsorption on oxide surfaces. Progress in Surface Science, 9, 143-164. doi:10.1016/0079-6816(79)90011-X
[12] Henderson, M.A. (2002) The interaction of water with solid surfaces: Fundamental aspects revisited. Surface Science Reports, 46, 1-308. doi:10.1016/S0167-5729(01)00020-6
[13] Diebold, U. (2003) The surface science of titanium dioxide. Surface Science Reports, 48, 53-229. doi:10.1016/S0167-5729(02)00100-0
[14] Fujishima, A. and Honda, K. (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37-38. doi:10.1038/238037a0
[15] Schoffstall, A.M. and Laing, E.M. (1984) Equilibration of nucleotide derivatives in formamide. Origins of Life and Evolution of Biospheres, 14, 221-228. doi:10.1007/BF00933661
[16] Schoffstall, A.M., Barto, R.J. and Ramos, D.L. (1982) Nucleoside and deoxynucleoside phosphorylation in formamide solutions. Origins of Life and Evolution of Biospheres, 12, 143-151. doi:10.1007/BF00927141
[17] Berndt, A., Kosmehl, H., Celeda, D. and Katenkamp, D. (1996) Reduced formamide content and hybridization temperature results in increased non-radioactive mRNA in situ hybridization signals. Acta Histochemica, 98, 79- 87. doi:10.1016/S0065-1281(96)80053-5
[18] Chalmet, S. and Ruiz-López, M.F. (1999) Molecular dynamics simulation of formamide in water using density functional theory and classical potentials. Journal of Chemical Physics, 111, 1117. doi:10.1063/1.479299
[19] Pomata, M.H.H., Laria, D., Skaf, M.S. and Elola, M.D. (2008) Molecular dynamics simulations of aot-water/ formamide reverse micelles: Structural and dynamical properties. Journal of Chemical Physics, 129, 244-503. doi:10.1063/1.3042275
[20] Smith, W., Forester, T.R. and Todorov, I.T. (2009) The DL POLY 2 user manual, version 2.20. STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire.
[21] Yong, C.W. (2010) DL Field—A force ?eld and model development tool for DL POLY. In: Blake, R., Ed., CSE Frontiers, STFCs Computational Science and Engineering Department, 38-40.
[22] Brooks, B.R., Nilsson, L., et al. (2009) Charmm: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545-1614. doi:10.1002/jcc.21287
[23] Kavathekar, R.S., Dev, P., English, N.J. and MacElroy, J.M.D. (2011) Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface. Molecular Physics, 109, 1649- 1656. doi:10.1080/00268976.2011.582051
[24] Guillot, B. and Sator, N. (2007) A computer simulation study of natural silicate melts. Part I: Low pressure properties. Geochimica et Cosmochimica Acta, 71, 1249-1265. doi:10.1016/j.gca.2006.11.015
[25] Matsui M. and Akaogi M. (1991) Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Molecular Simulation, 6, 239- 244. doi:10.1080/08927029108022432
[26] Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987) The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269-6271. doi:10.1021/j100308a038
[27] Robinson, G.W., Singh, S., Zhu, S.-B. and Evans, M.W. (1996) Water in biology, chemistry and physics: Experimental overviews and computational methodologies. World Scienti?c Series in Contemporary Chemical Physics, 9, 528.
[28] Kusalik, P.G. and Svishchev, I.M. (1994) The spatial structure in liquid water. Science, 265, 1219-1221. doi:10.1126/science.265.5176.1219
[29] Mitchell, M.C., Gallo, M. and Nenoff, T.M. (2004) Computer simulations of adsorption and diffusion for binary mixtures of methane and hydrogen in titanosilicates. Journal of Chemical Physics, 121, 1910-1916. doi:10.1063/1.1766019
[30] Chen, X. and Mao, S.S. (2007) Titanium dioxide nanomaterials: Synthesis, properties, modi?cations, and applications. Chemical Reviews, 107, 2891-2959. doi:10.1021/cr0500535

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.