|
[1]
|
Song, S. and Lee, J.E. (2018) Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients, 11, Article No. 8.[CrossRef] [PubMed]
|
|
[2]
|
Jeon, J., Jang, J. and Park, K. (2018) Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus. Nutrients, 11, Article No. 31.[CrossRef] [PubMed]
|
|
[3]
|
Qin, J.J., Li, Y.R., Cai, Z.M., Li, S.H., Zhu, J.F., Zhang, F., et al. (2012) A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature, 490, 55-60. https://www.nature.com/articles/nature11450
|
|
[4]
|
Cox, L.M. and Blaser, M.J. (2014) Antibiotics in Early Life and Obesity. Nature Reviews Endocrinology, 11, 182-190.[CrossRef] [PubMed]
|
|
[5]
|
Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J., Lynch, S.V. and Knight, R. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. https://www.nature.com/articles/nm.4517
|
|
[6]
|
Manrique, P., Bolduc, B., Walk, S.T., van der Oost, J., de Vos, W.M. and Young, M.J. (2016) Healthy Human Gut Phageome. Proceedings of the National Academy of Sciences, 113, 10400-10405.[CrossRef] [PubMed]
|
|
[7]
|
Bajzer, M. and Seeley, R.J. (2006) Obesity and Gut Flora. Nature, 444, 1009-1010. https://www.nature.com/articles/4441009a
|
|
[8]
|
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031.[CrossRef] [PubMed]
|
|
[9]
|
Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., et al. (2015) Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 161, 264-276.[CrossRef] [PubMed]
|
|
[10]
|
Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., et al. (2009) Interactions between Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. The ISME Journal, 4, 232-241.[CrossRef] [PubMed]
|
|
[11]
|
Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., et al. (2019) Research Progress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, 117, Article ID: 109138.[CrossRef] [PubMed]
|
|
[12]
|
Tremaroli, V. and Bäckhed, F. (2012) Functional Interactions between the Gut Microbiota and Host Metabolism. Nature, 489, 242-249. https://www.nature.com/articles/nature11552
|
|
[13]
|
Furet, J., Firmesse, O., Gourmelon, M., Bridonneau, C., Tap, J., Mondot, S., et al. (2009) Comparative Assessment of Human and Farm Animal Faecal Microbiota Using Real-Time Quantitative PCR. FEMS Microbiology Ecology, 68, 351-362.[CrossRef] [PubMed]
|
|
[14]
|
Guarner, F. and Malagelada, J. (2003) Gut Flora in Health and Disease. The Lancet, 361, 512-519.[CrossRef] [PubMed]
|
|
[15]
|
Li, L.Y., Pan, M., Pan, S.J., Li, W., Zhong, Y.D., Hu, J.L. and Nie, S.P. (2020) Effects of Insoluble and Soluble Fibers Isolated from Barley on Blood Glucose, Serum Lipids, Liver Function and Caecal Short-Chain Fatty Acids in Type 2 Diabetic and Normal Rats. Food and Chemical Toxicology, 135, Article ID: 110937. https://www.sciencedirect.com/science/article/abs/pii/S0278691519307276?via%3Dihub
|
|
[16]
|
Cao, Y., Yao, G., Sheng, Y., Yang, L., Wang, Z., Yang, Z., et al. (2019) JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. Journal of Diabetes Research, 2019, Article ID: 1872134.[CrossRef] [PubMed]
|
|
[17]
|
Adachi, K., Sugiyama, T., Yamaguchi, Y., Tamura, Y., Izawa, S., Hijikata, Y., et al. (2019) Gut Microbiota Disorders Cause Type 2 Diabetes Mellitus and Homeostatic Disturbances in Gut-Related Metabolism in Japanese Subjects. Journal of Clinical Biochemistry and Nutrition, 64, 231-238.[CrossRef] [PubMed]
|
|
[18]
|
Canfora, E.E., Jocken, J.W. and Blaak. E.E. (2015) Short-Chain Fatty Acids in Control of Body Weight and Insulin Sensitivity. Nature Reviews Endocrinology, 11, 577-591. https://www.nature.com/articles/nrendo.2015.128
|
|
[19]
|
Mandaliya, D.K. and Seshadri, S. (2019) Short Chain Fatty Acids, Pancreatic Dysfunction and Type 2 Diabetes. Pancreatology, 19, 280-284.[CrossRef] [PubMed]
|
|
[20]
|
Yamaguchi, Y., Adachi, K., Sugiyama, T., Shimozato, A., Ebi, M., Ogasawara, N., et al. (2016) Association of Intestinal Microbiota with Metabolic Markers and Dietary Habits in Patients with Type 2 Diabetes. Digestion, 94, 66-72.[CrossRef] [PubMed]
|
|
[21]
|
Pingitore, A., Chambers, E.S., Hill, T., Maldonado, I.R., Liu, B., Bewick, G., et al. (2016) The Diet-Derived Short Chain Fatty Acid Propionate Improves Beta-Cell Function in Humans and Stimulates Insulin Secretion from Human Islets in Vitro. Diabetes, Obesity and Metabolism, 19, 257-265.[CrossRef] [PubMed]
|
|
[22]
|
Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., et al. (2009) Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes, 58, 1509-1517.[CrossRef] [PubMed]
|
|
[23]
|
Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., et al. (2019) Causal Relationships among the Gut Microbiome, Short-Chain Fatty Acids and Metabolic Diseases. Nature Genetics, 51, 600-605.[CrossRef] [PubMed]
|
|
[24]
|
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., et al. (2014) Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 156, 84-96.[CrossRef] [PubMed]
|
|
[25]
|
Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478.[CrossRef] [PubMed]
|
|
[26]
|
Dorsam, R.T. and Gutkind, J.S. (2007) G-Protein-Coupled Receptors and Cancer. Nature Reviews Cancer, 7, 79-94.[CrossRef] [PubMed]
|
|
[27]
|
Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., et al. (2012) Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes, 61, 364-371.[CrossRef] [PubMed]
|
|
[28]
|
Larraufie, P., Martin-Gallausiaux, C., Lapaque, N., Dore, J., Gribble, F.M., Reimann, F., et al. (2018) SCFAs Strongly Stimulate PYY Production in Human Enteroendocrine Cells. Scientific Reports, 8, Article No. 74.[CrossRef] [PubMed]
|
|
[29]
|
Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M.A., Motoike, T., Kedzierski, R.M., et al. (2004) Short-Chain Fatty Acids Stimulate Leptin Production in Adipocytes through the G Protein-Coupled Receptor Gpr41. Proceedings of the National Academy of Sciences, 101, 1045-1050.[CrossRef] [PubMed]
|
|
[30]
|
Al-Lahham, S.H., Roelofsen, H., Priebe, M., Weening, D., Dijkstra, M., Hoek, A., et al. (2010) Regulation of Adipokine Production in Human Adipose Tissue by Propionic Acid. European Journal of Clinical Investigation, 40, 401-407.[CrossRef] [PubMed]
|
|
[31]
|
Canfora, E.E., van der Beek, C.M., Jocken, J.W.E., Goossens, G.H., Holst, J.J., Olde Damink, S.W.M., et al. (2017) Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Scientific Reports, 7, Article No. 2360.[CrossRef] [PubMed]
|
|
[32]
|
Sorbara, M.T., Dubin, K., Littmann, E.R., Moody, T.U., Fontana, E., Seok, R., et al. (2018) Inhibiting Antibiotic-Resistant Enterobacteriaceae by Microbiota-Mediated Intracellular Acidification. Journal of Experimental Medicine, 216, 84-98.[CrossRef] [PubMed]
|
|
[33]
|
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345.[CrossRef] [PubMed]
|
|
[34]
|
Sawicki, C., Livingston, K., Obin, M., Roberts, S., Chung, M. and McKeown, N. (2017) Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology. Nutrients, 9, 125-145.[CrossRef] [PubMed]
|
|
[35]
|
Chambers, E.S., Viardot, A., Psichas, A., Morrison, D.J., Murphy, K.G., Zac-Varghese, S.E.K., et al. (2014) Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults. Gut, 64, 1744-1754.[CrossRef] [PubMed]
|
|
[36]
|
Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., et al. (2013) Butyrate Attenuates Inflammation and Lipolysis Generated by the Interaction of Adipocytes and Macrophages. Journal of Atherosclerosis and Thrombosis, 20, 425-442.[CrossRef] [PubMed]
|
|
[37]
|
Al-Lahham, S., Roelofsen, H., Rezaee, F., Weening, D., Hoek, A., Vonk, R., et al. (2011) Propionic Acid Affects Immune Status and Metabolism in Adipose Tissue from Overweight Subjects. European Journal of Clinical Investigation, 42, 357-364.[CrossRef] [PubMed]
|
|
[38]
|
de Aguiar Vallim, T.Q., Tarling, E.J. and Edwards, P.A. (2013) Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism, 17, 657-669.[CrossRef] [PubMed]
|
|
[39]
|
Jia, W., Xie, G. and Jia, W. (2017) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128.[CrossRef] [PubMed]
|
|
[40]
|
Wahlström, A., Sayin, S.I., Marschall, H. and Bäckhed, F. (2016) Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 24, 41-50.[CrossRef] [PubMed]
|
|
[41]
|
Xu, J., Wang, N., Yang, L., Zhong, J. and Chen, M. (2024) Intestinal Flora and Bile Acid Interactions Impact the Progression of Diabetic Kidney Disease. Frontiers in Endocrinology, 15, Article ID: 1441415.[CrossRef] [PubMed]
|
|
[42]
|
Gérard, P. (2013) Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens, 3, 14-24.[CrossRef] [PubMed]
|
|
[43]
|
Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. and Staels, B. (2009) Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 89, 147-191.[CrossRef] [PubMed]
|
|
[44]
|
Guarner, F. and Malagelada, J. (2003) Gut Flora in Health and Disease. The Lancet, 361, 512-519.[CrossRef] [PubMed]
|
|
[45]
|
Fiorucci, S. and Distrutti, E. (2015) Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends in Molecular Medicine, 21, 702-714.[CrossRef] [PubMed]
|
|
[46]
|
Hodge, R.J. and Nunez, D.J. (2016) Therapeutic Potential of Takeda-G-Protein-Receptor-5 (TGR5) Agonists. Hope or Hype? Diabetes, Obesity and Metabolism, 18, 439-443.[CrossRef] [PubMed]
|
|
[47]
|
Shapiro, H., Kolodziejczyk, A.A., Halstuch, D. and Elinav, E. (2018) Bile Acids in Glucose Metabolism in Health and Disease. Journal of Experimental Medicine, 215, 383-396.[CrossRef] [PubMed]
|
|
[48]
|
Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., et al. (2009) TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metabolism, 10, 167-177.[CrossRef] [PubMed]
|
|
[49]
|
Kumar, D.P., Asgharpour, A., Mirshahi, F., Park, S.H., Liu, S., Imai, Y., et al. (2016) Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. Journal of Biological Chemistry, 291, 6626-6640.[CrossRef] [PubMed]
|
|
[50]
|
Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439.[CrossRef] [PubMed]
|
|
[51]
|
Prawitt, J., Abdelkarim, M., Stroeve, J.H.M., Popescu, I., Duez, H., Velagapudi, V.R., et al. (2011) Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes, 60, 1861-1871.[CrossRef] [PubMed]
|
|
[52]
|
Zhang, Y., Lee, F.Y., Barrera, G., Lee, H., Vales, C., Gonzalez, F.J., et al. (2006) Activation of the Nuclear Receptor FXR Improves Hyperglycemia and Hyperlipidemia in Diabetic Mice. Proceedings of the National Academy of Sciences, 103, 1006-1011.[CrossRef] [PubMed]
|
|
[53]
|
Fang, S., Suh, J.M., Reilly, S.M., Yu, E., Osborn, O., Lackey, D., et al. (2015) Intestinal FXR Agonism Promotes Adipose Tissue Browning and Reduces Obesity and Insulin Resistance. Nature Medicine, 21, 159-165.[CrossRef] [PubMed]
|
|
[54]
|
Kir, S., Beddow, S.A., Samuel, V.T., Miller, P., Previs, S.F., Suino-Powell, K., et al. (2011) FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science, 331, 1621-1624.[CrossRef] [PubMed]
|
|
[55]
|
Potthoff, M.J., Boney-Montoya, J., Choi, M., He, T., Sunny, N.E., Satapati, S., et al. (2011) FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism, 13, 729-738.[CrossRef] [PubMed]
|
|
[56]
|
Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., et al. (2018) Gut Microbiota and Intestinal FXR Mediate the Clinical Benefits of Metformin. Nature Medicine, 24, 1919-1929.[CrossRef] [PubMed]
|
|
[57]
|
Jiang, C., Xie, C., Lv, Y., Li, J., Krausz, K.W., Shi, J., et al. (2015) Intestine-Selective Farnesoid X Receptor Inhibition Improves Obesity-Related Metabolic Dysfunction. Nature Communications, 6, Article No. 10166.[CrossRef] [PubMed]
|
|
[58]
|
Xie, C., Jiang, C., Shi, J., Gao, X., Sun, D., Sun, L., et al. (2016) An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice. Diabetes, 66, 613-626.[CrossRef] [PubMed]
|
|
[59]
|
Trabelsi, M., Daoudi, M., Prawitt, J., Ducastel, S., Touche, V., Sayin, S.I., et al. (2015) Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L Cells. Nature Communications, 6, Article No. 7629.[CrossRef] [PubMed]
|
|
[60]
|
DeFronzo, R.A. (2010) Overview of Newer Agents: Where Treatment Is Going. The American Journal of Medicine, 123, S38-S48.[CrossRef] [PubMed]
|
|
[61]
|
Bekyarova, G.Y., Ivanova, D.G. and Madjova, V.H. (2007) Molecular Mechanisms Associating Oxidative Stress with Endothelial Dysfunction in the Development of Various Vascular Complications in Diabetes Mellitus. Folia Medica, 49, 13-19.
|
|
[62]
|
Baig, M.A. and Panchal, S.S. (2019) Streptozotocin-Induced Diabetes Mellitus in Neonatal Rats: An Insight into Its Applications to Induce Diabetic Complications. Current Diabetes Reviews, 16, 26-39.[CrossRef] [PubMed]
|
|
[63]
|
Gourgari, E., Dabelea, D. and Rother, K. (2017) Modifiable Risk Factors for Cardiovascular Disease in Children with Type 1 Diabetes: Can Early Intervention Prevent Future Cardiovascular Events? Current Diabetes Reports, 17, Article No. 134.[CrossRef] [PubMed]
|
|
[64]
|
Lee, C.B., Chae, S.U., Jo, S.J., Jerng, U.M. and Bae, S.K. (2021) The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 22, Article No. 3566.[CrossRef] [PubMed]
|
|
[65]
|
Mardinoglu, A., Boren, J. and Smith, U. (2016) Confounding Effects of Metformin on the Human Gut Microbiome in Type 2 Diabetes. Cell Metabolism, 23, 10-12.[CrossRef] [PubMed]
|
|
[66]
|
Wu, H., Esteve, E., Tremaroli, V., Khan, M.T., Caesar, R., Mannerås-Holm, L., et al. (2017) Metformin Alters the Gut Microbiome of Individuals with Treatment-Naive Type 2 Diabetes, Contributing to the Therapeutic Effects of the Drug. Nature Medicine, 23, 850-858.[CrossRef] [PubMed]
|
|
[67]
|
Fernandes, R., Viana, S.D., Nunes, S. and Reis, F. (2019) Diabetic Gut Microbiota Dysbiosis as an Inflammaging and Immunosenescence Condition That Fosters Progression of Retinopathy and Nephropathy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 1876-1897.[CrossRef] [PubMed]
|
|
[68]
|
Chen, W., Zhang, M., Guo, Y., Wang, Z., Liu, Q., Yan, R., et al. (2021) The Profile and Function of Gut Microbiota in Diabetic Nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 4283-4296.[CrossRef] [PubMed]
|
|
[69]
|
Gross, J.L., de Azevedo, M.J., Silveiro, S.P., Canani, L.H., Caramori, M.L. and Zelmanovitz, T. (2005) Diabetic Nephropathy: Diagnosis, Prevention, and Treatment. Diabetes Care, 28, 164-176.[CrossRef] [PubMed]
|
|
[70]
|
Gupta, A., Gupta, P. and Biyani, M. (2011) Targeted Therapies in Diabetic Nephropathy: An Update. Journal of Nephrology, 24, 686-695.[CrossRef] [PubMed]
|
|
[71]
|
Ritz, E. (1999) Nephropathy in Type 2 Diabetes. Journal of Internal Medicine, 245, 111-126.[CrossRef] [PubMed]
|
|
[72]
|
Sabatino, A., Regolisti, G., Cosola, C., Gesualdo, L. and Fiaccadori, E. (2017) Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 17, Article No. 16.[CrossRef] [PubMed]
|
|
[73]
|
Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., et al. (2013) Chronic Kidney Disease: Global Dimension and Perspectives. The Lancet, 382, 260-272.[CrossRef] [PubMed]
|
|
[74]
|
Ramezani, A., Massy, Z.A., Meijers, B., Evenepoel, P., Vanholder, R. and Raj, D.S. (2016) Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. American Journal of Kidney Diseases, 67, 483-498.[CrossRef] [PubMed]
|
|
[75]
|
Mahmoodpoor, F., Rahbar Saadat, Y., Barzegari, A., Ardalan, M. and Zununi Vahed, S. (2017) The Impact of Gut Microbiota on Kidney Function and Pathogenesis. Biomedicine & Pharmacotherapy, 93, 412-419.[CrossRef] [PubMed]
|
|
[76]
|
Vaziri, N.D., Yuan, J., Nazertehrani, S., Ni, Z. and Liu, S. (2013) Chronic Kidney Disease Causes Disruption of Gastric and Small Intestinal Epithelial Tight Junction. American Journal of Nephrology, 38, 99-103.[CrossRef] [PubMed]
|
|
[77]
|
Lin, K., Hsih, W., Lin, Y., Wen, C. and Chang, T. (2021) Update in the Epidemiology, Risk Factors, Screening, and Treatment of Diabetic Retinopathy. Journal of Diabetes Investigation, 12, 1322-1325.[CrossRef] [PubMed]
|
|
[78]
|
Papatheodorou, K., Papanas, N., Banach, M., Papazoglou, D. and Edmonds, M. (2016) Complications of Diabetes 2016. Journal of Diabetes Research, 2016, Article ID: 6989453.[CrossRef] [PubMed]
|
|
[79]
|
Lee, R., Wong, T.Y. and Sabanayagam, C. (2015) Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye and Vision, 2, Article No. 17.[CrossRef] [PubMed]
|
|
[80]
|
Beli, E., Yan, Y., Moldovan, L., Vieira, C.P., Gao, R., Duan, Y., et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes, 67, 1867-1879.[CrossRef] [PubMed]
|
|
[81]
|
Bader, M. (2010) Tissue Renin-Angiotensin-Aldosterone Systems: Targets for Pharmacological Therapy. Annual Review of Pharmacology and Toxicology, 50, 439-465.[CrossRef] [PubMed]
|
|
[82]
|
Das, A. (2016) Diabetic Retinopathy: Battling the Global Epidemic. Investigative Opthalmology & Visual Science, 57, 6669-6682.[CrossRef] [PubMed]
|
|
[83]
|
Dominguez, J.M., Hu, P., Caballero, S., Moldovan, L., Verma, A., Oudit, G.Y., et al. (2016) Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice. The American Journal of Pathology, 186, 1688-1700.[CrossRef] [PubMed]
|
|
[84]
|
Swetha, E. and Jeganathan, V. (2011) The Therapeutic Implications of Renin-Angiotensin System Blockade in Diabetic Retinopathy. Current Pharmaceutical Biotechnology, 12, 392-395.[CrossRef] [PubMed]
|
|
[85]
|
Perkins, B.A., Aiello, L.P. and Krolewski, A.S. (2009) Diabetes Complications and the Renin-Angiotensin System. New England Journal of Medicine, 361, 83-85.[CrossRef] [PubMed]
|
|
[86]
|
Sjølie, A.K., Dodson, P. and Hobbs, F.R.R. (2011) Does Renin-Angiotensin System Blockade Have a Role in Preventing Diabetic Retinopathy? A Clinical Review. International Journal of Clinical Practice, 65, 148-153.[CrossRef] [PubMed]
|
|
[87]
|
Verma, A., Shan, Z., Lei, B., Yuan, L., Liu, X., Nakagawa, T., et al. (2012) ACE2 and Ang-(1-7) Confer Protection against Development of Diabetic Retinopathy. Molecular Therapy, 20, 28-36.[CrossRef] [PubMed]
|
|
[88]
|
Tap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J., et al. (2009) Towards the Human Intestinal Microbiota Phylogenetic Core. Environmental Microbiology, 11, 2574-2584.[CrossRef] [PubMed]
|
|
[89]
|
Huang, Y., Yang, B. and Li, W. (2016) Defining the Normal Core Microbiome of Conjunctival Microbial Communities. Clinical Microbiology and Infection, 22, 643.e7-643.e12.[CrossRef] [PubMed]
|
|
[90]
|
Ozkan, J., Willcox, M., Wemheuer, B., Wilcsek, G., Coroneo, M. and Thomas, T. (2019) Biogeography of the Human Ocular Microbiota. The Ocular Surface, 17, 111-118.[CrossRef] [PubMed]
|
|
[91]
|
Lu, L.J. and Liu, J. (2016) Human Microbiota and Ophthalmic Disease. Yale Journal of Biology and Medicine, 89, 325-330.
|
|
[92]
|
Das, T., Jayasudha, R., Chakravarthy, S., Prashanthi, G.S., Bhargava, A., Tyagi, M., et al. (2021) Alterations in the Gut Bacterial Microbiome in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. Scientific Reports, 11, Article No. 2738.[CrossRef] [PubMed]
|
|
[93]
|
Jayasudha, R., Das, T., Kalyana Chakravarthy, S., Sai Prashanthi, G., Bhargava, A., Tyagi, M., et al. (2020) Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLOS ONE, 15, e0243077.[CrossRef] [PubMed]
|
|
[94]
|
Liu, W., Wang, C., Xia, Y., Xia, W., Liu, G., Ren, C., et al. (2020) Elevated Plasma Trimethylamine-N-Oxide Levels Are Associated with Diabetic Retinopathy. Acta Diabetologica, 58, 221-229.[CrossRef] [PubMed]
|
|
[95]
|
Huang, Y., Wang, Z., Ma, H., Ji, S., Chen, Z., Cui, Z., et al. (2021) Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 646348.[CrossRef] [PubMed]
|
|
[96]
|
Feldman, E.L., Callaghan, B.C., Pop-Busui, R., Zochodne, D.W., Wright, D.E., Bennett, D.L., et al. (2019) Diabetic Neuropathy. Nature Reviews Disease Primers, 5, Article No. 42.[CrossRef] [PubMed]
|
|
[97]
|
Vinik, A.I., Nevoret, M., Casellini, C. and Parson, H. (2013) Diabetic Neuropathy. Endocrinology and Metabolism Clinics of North America, 42, 747-787.[CrossRef] [PubMed]
|
|
[98]
|
Grasset, E. and Burcelin, R. (2019) The Gut Microbiota to the Brain Axis in the Metabolic Control. Reviews in Endocrine and Metabolic Disorders, 20, 427-438.[CrossRef] [PubMed]
|
|
[99]
|
Yagihashi, S., Mizukami, H. and Sugimoto, K. (2010) Mechanism of Diabetic Neuropathy: Where Are We Now and Where to Go? Journal of Diabetes Investigation, 2, 18-32.[CrossRef] [PubMed]
|
|
[100]
|
Rolim, L.C., da Silva, E.M., Flumignan, R.L., Abreu, M.M. and Dib, S.A. (2019) Acetyl-l-Carnitine for the Treatment of Diabetic Peripheral Neuropathy. Cochrane Database of Systematic Reviews, 2019, CD011265.[CrossRef] [PubMed]
|
|
[101]
|
Wang, Y., Ye, X., Ding, D. and Lu, Y. (2020) Characteristics of the Intestinal Flora in Patients with Peripheral Neuropathy Associated with Type 2 Diabetes. Journal of International Medical Research, 48, 300060520936806.[CrossRef] [PubMed]
|
|
[102]
|
Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., Mensah, G.A., Connor, M., Bennett, D.A., et al. (2014) Global and Regional Burden of Stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet, 383, 245-255.[CrossRef] [PubMed]
|
|
[103]
|
Stevens, R.J., Coleman, R.L., Adler, A.I., Stratton, I.M., Matthews, D.R. and Holman, R.R. (2004) Risk Factors for Myocardial Infarction Case Fatality and Stroke Case Fatality in Type 2 Diabetes. Diabetes Care, 27, 201-207.[CrossRef] [PubMed]
|
|
[104]
|
Clemente, J.C., Ursell, L.K., Parfrey, L.W. and Knight, R. (2012) The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 148, 1258-1270.[CrossRef] [PubMed]
|
|
[105]
|
Carabotti, M., Scirocco, A., Maselli, M.A. and Severi, C. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
|
|
[106]
|
Tang, W.H.W., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., et al. (2013) Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. New England Journal of Medicine, 368, 1575-1584.[CrossRef] [PubMed]
|
|
[107]
|
Haghikia, A., Li, X.S., Liman, T.G., Bledau, N., Schmidt, D., Zimmermann, F., et al. (2018) Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients with Stroke and Is Related to Proinflammatory Monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 2225-2235.[CrossRef] [PubMed]
|
|
[108]
|
Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Gupta, N., Wang, Z., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124.[CrossRef] [PubMed]
|
|
[109]
|
Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., et al. (2013) Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nature Medicine, 19, 576-585.[CrossRef] [PubMed]
|
|
[110]
|
Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63.[CrossRef] [PubMed]
|
|
[111]
|
Svingen, G.F.T., Zuo, H., Ueland, P.M., Seifert, R., Løland, K.H., Pedersen, E.R., et al. (2018) Increased Plasma Trimethylamine-N-Oxide Is Associated with Incident Atrial Fibrillation. International Journal of Cardiology, 267, 100-106.[CrossRef] [PubMed]
|
|
[112]
|
Tang, W.H.W., Wang, Z., Li, X.S., Fan, Y., Li, D.S., Wu, Y., et al. (2017) Increased Trimethylamine N-Oxide Portends High Mortality Risk Independent of Glycemic Control in Patients with Type 2 Diabetes Mellitus. Clinical Chemistry, 63, 297-306.[CrossRef] [PubMed]
|
|
[113]
|
Aronson, D. and Edelman, E.R. (2014) Coronary Artery Disease and Diabetes Mellitus. Cardiology Clinics, 32, 439-455.[CrossRef] [PubMed]
|
|
[114]
|
Yissachar, N., Zhou, Y., Ung, L., Lai, N.Y., Mohan, J.F., Ehrlicher, A., et al. (2017) An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell, 168, 1135-1148.e12.[CrossRef] [PubMed]
|
|
[115]
|
Kassam, Z., Lee, C.H., Yuan, Y. and Hunt, R.H. (2013) Fecal Microbiota Transplantation for Clostridium Difficile Infection: Systematic Review and Meta-Analysis. American Journal of Gastroenterology, 108, 500-508.[CrossRef] [PubMed]
|
|
[116]
|
Spinner, J.A., Bocchini, C.E., Luna, R.A., Thapa, S., Balderas, M.A., Denfield, S.W., et al. (2019) Fecal Microbiota Transplantation in a Toddler after Heart Transplant Was a Safe and Effective Treatment for Recurrent Clostridiodes difficile Infection: A Case Report. Pediatric Transplantation, 24, e13598.[CrossRef] [PubMed]
|
|
[117]
|
Khoruts, A. and Sadowsky, M.J. (2016) Understanding the Mechanisms of Faecal Microbiota Transplantation. Nature Reviews Gastroenterology & Hepatology, 13, 508-516.[CrossRef] [PubMed]
|
|
[118]
|
Peng, J., Narasimhan, S., Marchesi, J.R., Benson, A., Wong, F.S. and Wen, L. (2014) Long Term Effect of Gut Microbiota Transfer on Diabetes Development. Journal of Autoimmunity, 53, 85-94.[CrossRef] [PubMed]
|
|
[119]
|
Zhang, P.P., Li, L.L., Han, X., Li, Q.W., Zhang, X.H., Liu, J.J., et al. (2020) Fecal Microbiota Transplantation Improves Metabolism and Gut Microbiome Composition in Db/Db Mice. Acta Pharmacologica Sinica, 41, 678-685.[CrossRef] [PubMed]
|
|
[120]
|
La Sala, L., Carlini, V., Macas-Granizo, M.B., Trabucchi, E., Pontiroli, A.E., Berra, C., et al. (2025) The Eternal Struggle between Titans: Fecal Microbiota Transplant (FMT) versus Metformin in Type 2 Diabetes (T2D) Gut Dysmotility. Journal of Advanced Research.[CrossRef]
|
|
[121]
|
Kootte, R.S., Levin, E., Salojärvi, J., Smits, L.P., Hartstra, A.V., Udayappan, S.D., et al. (2017) Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 26, 611-619.e6.[CrossRef] [PubMed]
|
|
[122]
|
Wu, G.D., Compher, C., Chen, E.Z., Smith, S.A., Shah, R.D., Bittinger, K., et al. (2014) Comparative Metabolomics in Vegans and Omnivores Reveal Constraints on Diet-Dependent Gut Microbiota Metabolite Production. Gut, 65, 63-72.[CrossRef] [PubMed]
|
|
[123]
|
Wang, J., Gao, Y., Ren, S., Li, J., Chen, S., Feng, J., et al. (2024) Gut Microbiota-Derived Trimethylamine N-Oxide: A Novel Target for the Treatment of Preeclampsia. Gut Microbes, 16, Article ID: 2311888.[CrossRef] [PubMed]
|
|
[124]
|
Bonora, E., Cigolini, M., Bosello, O., Zancanaro, C., Capretti, L., Zavaroni, I., et al. (1984) Lack of Effect of Intravenous Metformin on Plasma Concentrations of Glucose, Insulin, C-Peptide, Glucagon and Growth Hormone in Non-Diabetic Subjects. Current Medical Research and Opinion, 9, 47-51.[CrossRef] [PubMed]
|
|
[125]
|
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. (2015) Disentangling Type 2 Diabetes and Metformin Treatment Signatures in the Human Gut Microbiota. Nature, 528, 262-266.[CrossRef] [PubMed]
|
|
[126]
|
Ejtahed, H., Tito, R.Y., Siadat, S., Hasani-Ranjbar, S., Hoseini-Tavassol, Z., Rymenans, L., et al. (2019) Metformin Induces Weight Loss Associated with Gut Microbiota Alteration in Non-Diabetic Obese Women: A Randomized Double-Blind Clinical Trial. European Journal of Endocrinology, 180, 165-176.[CrossRef] [PubMed]
|
|
[127]
|
Rosario, D., Benfeitas, R., Bidkhori, G., Zhang, C., Uhlen, M., Shoaie, S., et al. (2018) Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Frontiers in Physiology, 9, Article No. 775.[CrossRef] [PubMed]
|
|
[128]
|
Malik, F., Mehdi, S.F., Ali, H., Patel, P., Basharat, A., Kumar, A., et al. (2018) Is Metformin Poised for a Second Career as an Antimicrobial? Diabetes/Metabolism Research and Reviews, 34, e2975.[CrossRef] [PubMed]
|
|
[129]
|
Lee, H. and Ko, G. (2014) Effect of Metformin on Metabolic Improvement and Gut Microbiota. Applied and Environmental Microbiology, 80, 5935-5943.[CrossRef] [PubMed]
|
|
[130]
|
de la Cuesta-Zuluaga, J., Mueller, N.T., Corrales-Agudelo, V., Velásquez-Mejía, E.P., Carmona, J.A., Abad, J.M., et al. (2016) Metformin Is Associated with Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care, 40, 54-62.[CrossRef] [PubMed]
|
|
[131]
|
Rodriguez, J., Hiel, S. and Delzenne, N.M. (2018) Metformin: Old Friend, New Ways of Action-Implication of the Gut Microbiome? Current Opinion in Clinical Nutrition & Metabolic Care, 21, 294-301.[CrossRef] [PubMed]
|
|
[132]
|
Kuka, J., Videja, M., Makrecka-Kuka, M., Liepins, J., Grinberga, S., Sevostjanovs, E., et al. (2020) Metformin Decreases Bacterial Trimethylamine Production and Trimethylamine N-Oxide Levels in Db/Db Mice. Scientific Reports, 10, Article No. 14555.[CrossRef] [PubMed]
|
|
[133]
|
Adeshirlarijaney, A., Zou, J., Tran, H.Q., Chassaing, B. and Gewirtz, A.T. (2019) Amelioration of Metabolic Syndrome by Metformin Associates with Reduced Indices of Low-Grade Inflammation Independently of the Gut Microbiota. American Journal of Physiology-Endocrinology and Metabolism, 317, E1121-E1130.[CrossRef] [PubMed]
|
|
[134]
|
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., et al. (2013) Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, Article ID: 481651.[CrossRef] [PubMed]
|
|
[135]
|
Yun, S.I., Park, H.O. and Kang, J.H. (2009) Effect of Lactobacillus gasseri bnr17 on Blood Glucose Levels and Body Weight in a Mouse Model of Type 2 Diabetes. Journal of Applied Microbiology, 107, 1681-1686.[CrossRef] [PubMed]
|
|
[136]
|
Hove, K.D., Brøns, C., Færch, K., Lund, S.S., Rossing, P. and Vaag, A. (2015) Effects of 12 Weeks of Treatment with Fermented Milk on Blood Pressure, Glucose Metabolism and Markers of Cardiovascular Risk in Patients with Type 2 Diabetes: A Randomised Double-Blind Placebo-Controlled Study. European Journal of Endocrinology, 172, 11-20.[CrossRef] [PubMed]
|
|
[137]
|
Singh, R., Sharma, P. and Bhardwaj, P. (2016) Administration of Lactobacillus casei and Bifidobacterium bifidum Ameliorated Hyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats. International Journal of Preventive Medicine, 7, Article No. 102.[CrossRef] [PubMed]
|
|
[138]
|
Kleniewska, P. and Pawliczak, R. (2024) The Link between Dysbiosis, Inflammation, Oxidative Stress, and Asthma—The Role of Probiotics, Prebiotics, and Antioxidants. Nutrients, 17, Article No. 16.[CrossRef] [PubMed]
|
|
[139]
|
Bock, P.M., Telo, G.H., Ramalho, R., Sbaraini, M., Leivas, G., Martins, A.F., et al. (2020) The Effect of Probiotics, Prebiotics or Synbiotics on Metabolic Outcomes in Individuals with Diabetes: A Systematic Review and Meta-Analysis. Diabetologia, 64, 26-41.[CrossRef] [PubMed]
|
|
[140]
|
Kasińska, M.A. and Drzewoski, J. (2015) Effectiveness of Probiotics in Type 2 Diabetes: A Meta-Analysis. Polish Archives of Internal Medicine, 125, 803-813.[CrossRef] [PubMed]
|
|
[141]
|
Gibson, G.R. and Roberfroid, M.B. (1995) Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125, 1401-1412.[CrossRef] [PubMed]
|
|
[142]
|
Cani, P.D., Dewever, C. and Delzenne, N.M. (2004) Inulin-Type Fructans Modulate Gastrointestinal Peptides Involved in Appetite Regulation (Glucagon-Like Peptide-1 and Ghrelin) in Rats. British Journal of Nutrition, 92, 521-526.[CrossRef] [PubMed]
|
|
[143]
|
Anson, R.M., Guo, Z., de Cabo, R., Iyun, T., Rios, M., Hagepanos, A., et al. (2003) Intermittent Fasting Dissociates Beneficial Effects of Dietary Restriction on Glucose Metabolism and Neuronal Resistance to Injury from Calorie Intake. Proceedings of the National Academy of Sciences, 100, 6216-6220.[CrossRef] [PubMed]
|
|
[144]
|
Zhang, C., Li, S., Yang, L., Huang, P., Li, W., Wang, S., et al. (2013) Structural Modulation of Gut Microbiota in Life-Long Calorie-Restricted Mice. Nature Communications, 4, Article No. 2163.[CrossRef] [PubMed]
|
|
[145]
|
Zarrinpar, A., Chaix, A., Yooseph, S. and Panda, S. (2014) Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 20, 1006-1017.[CrossRef] [PubMed]
|
|
[146]
|
Liu, Z., Dai, X., Zhang, H., Shi, R., Hui, Y., Jin, X., et al. (2020) Gut Microbiota Mediates Intermittent-Fasting Alleviation of Diabetes-Induced Cognitive Impairment. Nature Communications, 11, Article No. 855.[CrossRef] [PubMed]
|
|
[147]
|
Hendrikx, T., Duan, Y., Wang, Y., Oh, J., Alexander, L.M., Huang, W., et al. (2018) Bacteria Engineered to Produce IL-22 in Intestine Induce Expression of REG3G to Reduce Ethanol-Induced Liver Disease in Mice. Gut, 68, 1504-1515.[CrossRef] [PubMed]
|
|
[148]
|
Duan, F., Curtis, K.L. and March, J.C. (2008) Secretion of Insulinotropic Proteins by Commensal Bacteria: Rewiring the Gut to Treat Diabetes. Applied and Environmental Microbiology, 74, 7437-7438.[CrossRef] [PubMed]
|
|
[149]
|
Hsu, B.B., Gibson, T.E., Yeliseyev, V., Liu, Q., Lyon, L., Bry, L., et al. (2019) Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host & Microbe, 25, 803-814.e5.[CrossRef] [PubMed]
|
|
[150]
|
Rasmussen, T.S., Mentzel, C.M.J., Kot, W., Castro-Mejía, J.L., Zuffa, S., Swann, J.R., et al. (2020) Faecal Virome Transplantation Decreases Symptoms of Type 2 Diabetes and Obesity in a Murine Model. Gut, 69, 2122-2130.[CrossRef] [PubMed]
|
|
[151]
|
Ng, S.C., Xu, Z., Mak, J.W.Y., Yang, K., Liu, Q., Zuo, T., et al. (2021) Microbiota Engraftment after Faecal Microbiota Transplantation in Obese Subjects with Type 2 Diabetes: A 24-Week, Double-Blind, Randomised Controlled Trial. Gut, 71, 716-723.[CrossRef] [PubMed]
|
|
[152]
|
Wu, Z., Zhang, B., Chen, F., Xia, R., Zhu, D., Chen, B., et al. (2023) Fecal Microbiota Transplantation Reverses Insulin Resistance in Type 2 Diabetes: A Randomized, Controlled, Prospective Study. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 1089991.[CrossRef] [PubMed]
|