Gentian extract induces caspase-independent and mitochondria-modulated cell death

Abstract

Extracts from the dried roots of gentian plant, Gentiana triflora, exhibit an antiproliferative activity against cultured and implanted tumor cells. However, the underlying mechanism has been unclear. In the present study, we show that the cell death induced by the extract occurs caspase-independently and depends on metabolic status of mitochondrial respiration. We observed that sensitivity to the extract was considerably lower in HeLa cells, which have a low rate of mitochondrial respiration, in comparison to Y3-Ag1.2.3 cells, which have a higher rate of respiration. Furthermore, sensitivity of HeLa cells to the extract increased significantly when they were forced to switch their energy dependency from glycolysis to mitochondrial respiration. These results indicate that the gentian extract targets on mitochondrial respira-tion. Consequently, different respiratory activities in mitochondria confer cells to have different suscepti-bilities to the extract-induced cell death.

Share and Cite:

Ogata, M. , Matsukawa, K. , Kogusuri, K. , Yamashita, T. , Hikage, T. , Ito, K. , Saitoh, Y. and Tsutsumi, K. (2011) Gentian extract induces caspase-independent and mitochondria-modulated cell death. Advances in Biological Chemistry, 1, 49-57. doi: 10.4236/abc.2011.13007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kumar, A. and Rothman, J.H. (2007) Cell death: hook, line and linker. Current Biology, 17, R286- R289. doi:10.1016/j.cub.2007.02.032
[2] Yuan, J. and Kroemer, G. (2010) Alternative cell death mechanisms in development and beyond. Genes & De-velopment, 24, 2592-2602. doi:10.1101/gad.1984410
[3] Orrenius, S., Nicotera, P. and Zhivotovsky, B. (2011) Cell death mechanisms and their implications in toxicology. Toxicological Sciences, 119, 3-9. doi:10.1093/toxsci/kfq268
[4] Pelicano, H. Feng, L., Zhou, Y., Carew, J.S., Hileman, E. O., Plunkett, W., Keating, M. J. and Huang, P. (2003) In-hibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. Jour- nal of Biological Chemistry, 278, 37832-37839. doi:10.1074/jbc.M301546200
[5] Gatenby, R.A. and Gillies, R.J. (2004) Why do cancers have high aerobic glycolysis? Nature Review of Cancer, 4, 891-899. doi:10.1038/nrc1478
[6] Pelicano, H., Xu, R.H., Du, M., Feng, L., Sasaki, R., Carew, J.S., Hu, Y., Ramdas, L., Hu, L., Keating, M.J., Zhang, W., Plunkett, W. and Huang, P. (2006) Mitochon-drial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated me-chanism. Journal of Cell Biology, 175, 913-923. doi:10.1083/jcb.200512100
[7] Kwong, J.Q., Henning, M.S., Starkov A.A. and Manfredi, G. (2007) The mitochondrial respiratory chain is a mo- dulator of apoptosis. Journal of Cell Biology, 179, 1163- 1177. doi:10.1083/jcb.200704059
[8] Majno, G. and Joris, I. (1995) Apoptosis, oncosis and necrosis: An overview of cell death. American Journal of Pathology, 146, 3-15.
[9] Haraguchi, M., Torii, S., Matsuzawa, S., Xie, Z., Kitada, S., Krajewski, S., Yoshida, H., Mak, T.W. and Reed, J. (2000) Apoptotic protease activating factor 1 (Apaf-1)-I ndependent cell death suppression by Bcl-2. Journal of Experimental Medicine, 191, 1709-1720. doi:10.1084/jem.191.10.1709
[10] Mochizuki, T., Asai, A., Saito, N., Tanaka, S., Katagiri, H., Asano, T., Nakane, M., Tamura, A., Kuchino, Y., Kitanaka, C. and Kirino, T. (2002) Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. Journal of Biological Chemistry, 277, 2790-2797. doi:10.1074/jbc.M106361200
[11] Mills, E.M., Xu, D., Fergusson, M.M., Combs, C.A., Xu, Y. and Finkel, T. (2002) Regulation of oncosis by unupl-ing protein 2. Journal of Biological Chemistry, 277, 27385-27392. doi:10.1074/jbc.M111860200
[12] Wu, Y.T., Zhang, S., Kim, Y.S., Tan, H.L., Whiteman, M., Ong, C.N., Liu, Z.G., Ichijo, H. and Shen, H.M. (2008) Signaling pathways from membrane lipid rafts to JNK1 activation in reactive nitrogen species-induced non-apo- ptotic cell death. Cell Death and Differentiation, 15, 386- 397. doi:10.1038/sj.cdd.4402273
[13] Warburg, O. (1956) On the origin of cancer cells. Science, 123, 309-314. doi:10.1126/science.123.3191.309
[14] Warburg, O., Geissler, A.W. and Lorenz, S. (1967) On growth of cancer cells in media in which glucose is re-placed by galactose. Hoppe-Seylers Zeitschrift fur Physi-ologische Chemie, 348, 1686-1687. doi:10.1515/bchm2.1967.348.1.1686
[15] Golshani-Hebroni, S.G. and Bessman, S.P. (1997) He- xokinase binding to mitochondria: A basis for proliferative energy metabolism. Journal of Bioenergetics and Bi- omembrane, 29, 331-338.
[16] Rodoriguez-Enriquez, S., Jaures, O., Rodoriguez-Zavala, J.S. and Moreno-Sanchez, R. (2001) Multisite control of the Crabtree affect in ascites hepatoma cells. European Journal of Biochemistry, 268, 2512-2519. doi:10.1046/j.1432-1327.2001.02140.x
[17] Simonnet, H., Alazard, N., Pfeiffer, K., Gallow, C., Be-roud, C., Demont, J., Bouvier, R., Schaggar, H. and Go- dinot, C. (2002) Low mitochondria respiratory chain con- tent correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis, 23, 759-768. doi:10.1093/carcin/23.5.759
[18] Xu, R., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J. and Huang, P. (2005) Inhibi-tion of glycolysis in cancer cells: A novel strategy to over-come drug resistance associated with mitochondrial respi-ratory defect and hypoxia. Cancer Research, 65, 613- 621.
[19] Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2008) Mitochondria in cancer cells: What is so special about them. Trends in Cell Biology, 18, 165-173. doi:10.1016/j.tcb.2008.01.006
[20] Dang, C.V. and Semenza, G.L. (1999) Oncogenic altera-tions of metabolism. Trends in Biochemical Sciences, 24, 68-72. doi:10.1016/S0968-0004(98)01344-9
[21] Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70. doi:10.1016/S0092-8674(00)81683-9
[22] Elstrom, E.L., Bauer, D.E., Buzzai, M., Karnauskas, R., Harris, M.H., Plas, D.R., Zhuang, H., Cinalli, R.M., Alavi, A., Rudin, C.M., Craig, B. and Thompson, C.B. (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892-3899. doi:10.1158/0008-5472.CAN-03-2904
[23] Ibsen, H. (1961) The Crabtree effect: A review. Cancer Research, 21, 829-841.
[24] Reitzer, L., Wice, B. and Kennel, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. Journal of Biological Chemistry, 254, 2669-2676.
[25] Rossignol, R., Gilkerson, R., Aggeler, R., Yamagata, K., James-Remington, S. and Capaldi, R.A. (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Research, 64, 985- 993. doi:10.1158/0008-5472.CAN-03-1101
[26] Marroquin, L., Hynes, J., Dykens, J.A., Jamieson, J.D. and Will, Y. (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases suscep-tibility of HepG2 cells to mitochondrial toxicants. Tox-icological Sciences, 97, 539-547. doi:10.1093/toxsci/kfm052
[27] Jensen, S.R. and Schripsema, J. (2002) Chemotaxonomy and pharmacology of Gentianaceae. In: Struwe, L. and Albert, V. Eds., Gentianaceae-Systematics and Natural History. Cambridge University Press, London, 573-631.
[28] Matsukawa, K., Ogata, M., Hikage, T., Minami, H., Shi- tai, Y., Saitoh, Y., Yamashita, T., Ouchi, A., Tsutsumi, R., Fujioka, T. and Tsutsumi, K. (2006) Antiproliferative ac-tivity of root extract from gentian plant (Gentiana triflora) on cultured and implanted tumor cells. Bioscience, Bio-technology and Biochemistry, 70, 1046-1048. doi:10.1271/bbb.70.1046
[29] Matsukawa, K., Kamata, T., and Ito, K. (2009) Functional expression of plant alternative oxidase decreases antimycin A-induced reactive oxygen species production in human cells. FEBS Letters, 583, 148-152. doi:10.1016/j.febslet.2008.11.040
[30] Wall, M. and Wani, M. (1995) Campthotecin and taxol: discovery to clinic. Cancer Research, 55, 753-760.
[31] Qian, Y. Wang, H., Yao, W. and Gao, X. (2008) Aqueous extract of the Chinese medicine, Danggui-haoyao-san, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Cell Biology International, 32, 304- 11.
[32] Fitch, M., Chang, C. and Parslow, T. (2000) The BH3 domain is required for caspase-independent cell death induced by Bax and oligomycin. Cell Death and Diffe-rentiation, 7, 338-349. doi:10.1038/sj.cdd.4400659
[33] Norberg, E., Orrenius, S. and Zhivotovsky, B. (2010) Mit- ochondrial regulation of cell death: Processing of apoptosis-inducing factor (AIF). Biochemical and Bio-physical Research Communications, 396, 95-100. doi:10.1016/j.bbrc.2010.02.163
[34] Zhivotovsky, B. and Orrenius, S. (2010) Cell death me- anisms: Cross-talk and role in disease. Experimental Cell Research, 316, 1374-1383. doi:10.1016/j.yexcr.2010.02.037
[35] Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E., Baehrecke, E., Blagosklonny, M., El-Deiry, W., Golstein, P., Green, D., Hengartner, M., Knight, R., Kumar, S., Lipton, S., Malorni, W., Nunez, G., Peter, M., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B. and Melino, G. (2009) Classification of cell death: Recom-mendation of the nomenclature committee on cell death 2009. Cell Death and Differentiation, 116, 3-11. doi:10.1038/cdd.2008.150
[36] Eguchi, Y., Shimizu, S. and Tsujimoto, Y. (1997) Intra-cellular ATP levels determine cell death by apoptosis or necrosis. Cancer Research, 57, 1835-1840.
[37] Tomiyama, A., Serizawa, S., Tachibana, K., Sakurada, K., Samejima, H., Kuchino, Y. and Kitanaka, C. (2006) Cri- cal role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak. Journal of the National Cancer Institute (USA), 98, 1462-1473. doi:10.1093/jnci/djj395

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.