A Green Microwave-Assisted Synthesis of New Pyridazinium-Based Ionic Liquids as an Environmentally Friendly Alternative
Mouslim Messali, Saleh A. Ahmed
.
DOI: 10.4236/gsc.2011.13012   PDF    HTML     7,356 Downloads   14,736 Views   Citations

Abstract

A green microwave-assisted procedure for the preparation of a series of fifteen new N-alkylpyridazinium ionic liquids with different functionality in the alkyl chain is described. For the first time, target ionic liquids were prepared using standard methodology and under microwave irradiation in short duration of time with quantitative yields. In most cases, the microwave-assisted reaction is an environmentally friendly alternative to traditional methods.

Share and Cite:

M. Messali and S. Ahmed, "A Green Microwave-Assisted Synthesis of New Pyridazinium-Based Ionic Liquids as an Environmentally Friendly Alternative," Green and Sustainable Chemistry, Vol. 1 No. 3, 2011, pp. 70-75. doi: 10.4236/gsc.2011.13012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. D. Rogers and K. Seddon, “Ionic Liquids: Industrial Applications for Green Chemistry,” Oxford University Press, Oxford, 2002.
[2] J. F. Liu, G. B. Jiang, Y. G. Chi, Y. Q. Cai, Q. X. Zhou and J. T. Hu, “Use of Ionic Liquids for Liquid-Phase Mi-croextraction of Polycyclic Aromatic Hydrocarbons,” Analytical Chemistry, Vol. 75, No. 21, 2003, pp. 5870- 5876. doi:10.1021/ac034506m
[3] J. H. Wang, D. H. Cheng, X. Y. Chen, Z. Du and Z. L. Fang, “Direct Extraction of Double-Stranded DNA into Ionic Liquid 1-Butyl-3-Methylimidazolium Hexafluoro- phosphate and Its Quantification,” Analytical Chemistry, Vol. 79, No. 2, 2007, 620. doi:10.1021/ac061145c
[4] F. Endres, “Ionic Liquids, Solvents for the Electro-depo- sition of Metals and Semiconductors,” ChemPhysChem, Vol. 3, No. 2, 2002, pp. 144-154. doi:10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
[5] Y. F. Lin and S. I. Wen, “Electrodeposition of Zinc from a Lewis Acidic Zinc Chloride-1-Ethyl-3-Methylimida- zolium Chloride Molten Salt,” Electrochimica Acta, Vol. 44, No. 16, 1999, pp. 2771-2777. doi:10.1016/S0013-4686(99)00003-1
[6] S. Takahashi, N. Koura, S. Kohara, M. L. Saboungi and L. A. Curtiss, “Technological and Scientific Issues of Room- Temperature Molten Salts,” Plasmas Ions, Vol. 2, No. 3- 4, 1999, pp. 91-105. doi:10.1016/S1288-3255(99)00105-7
[7] J. F. Brennecke and E. J. Magin, “Ionic Liquids: Inno- vative Fluids for Chemical Processing,” AIChE Journal, Vol. 47, No. 11, 2001, pp. 2384-2389. doi:10.1002/aic.690471102
[8] M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagi-wara and Y. Ito, “Application of Low-Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors,” Journal of the Electrochemical Society, Vol. 150, No. 4, 2003, pp. A499-A502. doi:10.1149/1.1559069
[9] A. Balducci, U. Bardi, S. Caporali, M. Mastragostino and F. Soavi, “Ionic Liquids for Hybrid Supercapacitors,” Electrochemistry Communications, Vol. 6, No. 6, 2004, pp. 566-570. doi:10.1016/j.elecom.2004.04.005
[10] M. Messali, “A Green Microwave-Assisted Synthesis, Characterization and Comparative Study of New Pyri- dazinium-Based Ionic Liquids Derivatives towards Co- rrosion of Mild Steel in Acidic Environment,” Journal of Materials and Environmental Science, Vol. 2, No. 2, 2011, pp. 174-185.
[11] L. Moens, D. M. Blake, D. L. Rudnicki and M. J. Hale, “Advanced Thermal Storage Fluids for Solar Parabolic Trough Systems,” Journal of Solar Energy Engineering, Vol. 125, No. 1, 2003, pp. 112-116. doi:10.1115/1.1531644
[12] P. T. Anastas and J. C.Warner, “Green Chemistry, Theory and Practice,” Oxford University Press, Oxford, UK, 1998.
[13] A. Loupy, “Solvent-Free Microwave Organic Synthesis as an Efficient Procedure for Green Chemistry,” Comptes Rendus Chimie, Vol. 7, No. 2, 2004, pp. 103-112.
[14] A. Aupoix, B. Pegot and G. Vo-Thanh, “Synthesis of Imidazolium and Pyridinium-Based Ionic Liquids and Application of 1-Alkyl-3-Methylimidazolium Salts as Pre-catalysts for the Benzoin Condensation Using Sol-vent-Free and Microwave Activation,” Tetrahedron, Vol. 66, No. 6, 2010, pp. 1352-1356. doi:10.1016/j.tet.2009.11.110
[15] F. Yi, Y. Peng and G. Song, “Microwave-Assisted Liq-uid-Phase Synthesis of Methyl 6-Amino-5-Cyano-4-Aryl- 2-Methyl-4H-Pyran-3-Carboxylate Using Functional Ionic Liquid as Soluble Support,” Tetrahedron Letters, Vol. 46, No. 22, 2005, pp. 3931-3933. doi:10.1016/j.tetlet.2005.03.197
[16] V. Singh, S. Kaur, V. Sapehiyia, J. Singh and G. L. Kad, “Microwave Accelerated Preparation of [Bmim][HSO4] Ionic Liquid: An Acid Catalyst for Improved Synthesis of Coumarins,” Catalysis Communications, Vol. 6, No. 1, 2005, pp. 57-60. doi:10.1016/j.catcom.2004.10.011
[17] M. Deetlefs and K. R. Seddon, “Improved Preparations of Ionic Liquids Using Microwave Irradiation,” Green Chemistry, Vol. 5, 2003, No. 2, pp. 181-186. doi:10.1039/b300071k
[18] M. Messali, “A Facile and Green Microwave-Assisted Synthesis of New Functionalized Picolinium-Based Ionic Liquids,” Arabian Journal of Chemistry, In Press, Avail-able Online, July 2011. doi:10.1016/j.arabjc.2011.06.030
[19] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker and R. D. Rogers, “Characteriza-tion and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Im-idazolium Cation,” Green Chemistry, Vol. 3, No. 4, 2001, pp. 156-164. doi:10.1039/b103275p
[20] R. S. Varma and V. V. Namboodiri, “Solvent-Free Prep-aration of Ionic Liquids Using a Household Micro- wave Oven,” Pure and Applied Chemistry, Vol. 73, No. 8, 2001, pp. 1309-1313. doi:10.1351/pac200173081309

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.