[1]
|
Xi, P., Zhi, J., Zheng, C., et al. (2011) Regulation of Protein Metabolism by Glutamine: Implications for Nutrition and Health. Frontiers in Bioscience, 16, Article No. 578. https://doi.org/10.2741/3707
|
[2]
|
Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R. and Newsholme, P. (2018) Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 10, Article No. 1564. https://doi.org/10.3390/nu10111564
|
[3]
|
Kumar, V. and Stewart, J.H. (2024) Immune Homeostasis: A Novel Example of Teamwork. In: Kumar, V., Ed., Immune Homeostasis. Methods in Molecular Biology, Springer US, 1-24. https://doi.org/10.1007/978-1-0716-3754-8_1
|
[4]
|
Parijs, L.V. and Abbas, A.K. (1998) Homeostasis and Self-Tolerance in the Immune System: Turning Lymphocytes off. Science, 280, 243-248. https://doi.org/10.1126/science.280.5361.243
|
[5]
|
Sartori, T., Galvão dos Santos, G., Nogueira-Pedro, A., Makiyama, E., Rogero, M.M., Borelli, P., et al. (2017) Effects of Glutamine, Taurine and Their Association on Inflammatory Pathway Markers in Macrophages. Inflammopharmacology, 26, 829-838. https://doi.org/10.1007/s10787-017-0406-4
|
[6]
|
Frauwirth, K. (2014) Glutamine Uptake and Immunomodulation: An Overview. In: Rajendram, R., Preedy, V. and Patel, V., Eds., Glutamine in Clinical Nutrition, Springer, 55-66. https://doi.org/10.1007/978-1-4939-1932-1_4
|
[7]
|
Newsholme, P., Curi, R., Pithon Curi, T.C., Murphy, C.J., Garcia, C. and Pires de Melo, M. (1999) Glutamine Metabolism by Lymphocytes, Macrophages, and Neutrophils: Its Importance in Health and Disease. The Journal of Nutritional Biochemistry, 10, 316-324. https://doi.org/10.1016/s0955-2863(99)00022-4
|
[8]
|
Liu, P., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., et al. (2017) α-Ketoglutarate Orchestrates Macrophage Activation through Metabolic and Epigenetic Reprogramming. Nature Immunology, 18, 985-994. https://doi.org/10.1038/ni.3796
|
[9]
|
Liu, S., Yang, J. and Wu, Z. (2021) The Regulatory Role of Α-Ketoglutarate Metabolism in Macrophages. Mediators of Inflammation, 2021, Article ID: 5577577. https://doi.org/10.1155/2021/5577577
|
[10]
|
Zhang, X., Liu, L., Yuan, X., Wei, Y. and Wei, X. (2019) JMJD3 in the Regulation of Human Diseases. Protein & Cell, 10, 864-882. https://doi.org/10.1007/s13238-019-0653-9
|
[11]
|
Newsholme, P. (2001) Why Is L-Glutamine Metabolism Important to Cells of the Immune System in Health, Postinjury, Surgery or Infection? The Journal of Nutrition, 131, 2515S-2522S. https://doi.org/10.1093/jn/131.9.2515s
|
[12]
|
Murphy, C. and Newsholme, P. (1998) Importance of Glutamine Metabolism in Murine Macrophages and Human Monocytes to L-Arginine Biosynthesis and Rates of Nitrite or Urea Production. Clinical Science, 95, 397-407. https://doi.org/10.1042/cs0950397
|
[13]
|
Bellows, C.F. and Jaffe, B.M. (1999) Glutamine Is Essential for Nitric Oxide Synthesis by Murine Macrophages. Journal of Surgical Research, 86, 213-219. https://doi.org/10.1006/jsre.1999.5713
|
[14]
|
Calder, P.C. and Yaqoob, P. (1999) Glutamine and the Immune System. Amino Acids, 17, 227-241. https://doi.org/10.1007/bf01366922
|
[15]
|
Yassad, A., Husson, A., Bion, A. and Lavoinne, A. (2000) Synthesis of Interleukin 1β and Interleukin 6 by Stimulated Rat Peritoneal Macrophages: Modulation by Glutamine. Cytokine, 12, 1288-1291. https://doi.org/10.1006/cyto.1999.0729
|
[16]
|
Rosales, C. (2018) Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Frontiers in Physiology, 9, Article No. 113. https://doi.org/10.3389/fphys.2018.00113
|
[17]
|
Lee, M., Lee, S.Y. and Bae, Y. (2022) Emerging Roles of Neutrophils in Immune Homeostasis. BMB Reports, 55, 473-480. https://doi.org/10.5483/bmbrep.2022.55.10.115
|
[18]
|
Belambri, S.A., Rolas, L., Raad, H., Hurtado‐Nedelec, M., Dang, P.M. and El‐Benna, J. (2018) NADPH Oxidase Activation in Neutrophils: Role of the Phosphorylation of Its Subunits. European Journal of Clinical Investigation, 48, e12951. https://doi.org/10.1111/eci.12951
|
[19]
|
Sanchez, F., Gil, J.L. and Perán, M. (2015) Modifications of L-Glutamine and L-Leucine Transport in Proliferating Lymphocytes. Journal of Biosciences and Medicines, 3, 104-109. https://doi.org/10.4236/jbm.2015.33016
|
[20]
|
Wang, B., Pei, J., Xu, S., Liu, J. and Yu, J. (2024) A Glutamine Tug-of-War between Cancer and Immune Cells: Recent Advances in Unraveling the Ongoing Battle. Journal of Experimental & Clinical Cancer Research, 43, Article No. 74. https://doi.org/10.1186/s13046-024-02994-0
|
[21]
|
Carr, E.L., Kelman, A., Wu, G.S., Gopaul, R., Senkevitch, E., Aghvanyan, A., et al. (2010) Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK during T Lymphocyte Activation. The Journal of Immunology, 185, 1037-1044. https://doi.org/10.4049/jimmunol.0903586
|
[22]
|
Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., et al. (2022) Heat Shock Proteins: Biological Functions, Pathological Roles, and Therapeutic Opportunities. MedComm, 3, e161. https://doi.org/10.1002/mco2.161
|
[23]
|
Kampinga, H.H., Hageman, J., Vos, M.J., Kubota, H., Tanguay, R.M., Bruford, E.A., et al. (2009) Guidelines for the Nomenclature of the Human Heat Shock Proteins. Cell Stress and Chaperones, 14, 105-111. https://doi.org/10.1007/s12192-008-0068-7
|
[24]
|
Krause, M., Heck, T.G., Bittencourt, A., Scomazzon, S.P., Newsholme, P., Curi, R., et al. (2015) The Chaperone Balance Hypothesis: The Importance of the Extracellular to Intracellular HSP70 Ratio to Inflammation‐Driven Type 2 Diabetes, the Effect of Exercise, and the Implications for Clinical Management. Mediators of Inflammation, 2015, Article ID: 249205. https://doi.org/10.1155/2015/249205
|
[25]
|
Wischmeyer, P.E., Kahana, M., Wolfson, R., Ren, H., Musch, M.M. and Chang, E.B. (2001) Glutamine Induces Heat Shock Protein and Protects against Endotoxin Shock in the Rat. Journal of Applied Physiology, 90, 2403-2410. https://doi.org/10.1152/jappl.2001.90.6.2403
|
[26]
|
Singleton, K.D. and Wischmeyer, P.E. (2008) Glutamine Induces Heat Shock Protein Expression via O‐Glycosylation and Phosphorylation of HSF‐1 and Sp1. Journal of Parenteral and Enteral Nutrition, 32, 371-376. https://doi.org/10.1177/0148607108320661
|
[27]
|
Petry, É.R., Cruzat, V.F., Heck, T.G., de Bittencourt, P.I.H. and Tirapegui, J. (2015) L-glutamine Supplementations Enhance Liver Glutamine-Glutathione Axis and Heat Shock Factor-1 Expression in Endurance-Exercise Trained Rats. International Journal of Sport Nutrition and Exercise Metabolism, 25, 188-197. https://doi.org/10.1123/ijsnem.2014-0131
|
[28]
|
Walsh, N.P., Blannin, A.K., Robson, P.J. and Gleeson, M. (1998) Glutamine, Exercise and Immune Function. Links and Possible Mechanisms. Sports Medicine, 26, 177-191. https://doi.org/10.2165/00007256-199826030-00004
|
[29]
|
Tirapegui, J. and Cruzat, V.F. (2014) Glutamine and Skeletal Muscle. In: Rajendram, R., Preedy, V. and Patel, V., Eds., Glutamine in Clinical Nutrition, Springer, 499-511. https://doi.org/10.1007/978-1-4939-1932-1_38
|
[30]
|
Boulland, J., Osen, K.K., Levy, L.M., Danbolt, N.C., Edwards, R.H., Storm‐Mathisen, J., et al. (2002) Cell‐Specific Expression of the Glutamine Transporter SN1 Suggests Differences in Dependence on the Glutamine Cycle. European Journal of Neuroscience, 15, 1615-1631. https://doi.org/10.1046/j.1460-9568.2002.01995.x
|
[31]
|
Albrecht, J., Sidoryk-Węgrzynowicz, M., Zielińska, M. and Aschner, M. (2010) Roles of Glutamine in Neurotransmission. Neuron Glia Biology, 6, 263-276. https://doi.org/10.1017/s1740925x11000093
|
[32]
|
Zielińska, M., Albrecht, J. and Popek, M. (2022) Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Frontiers in Neuroscience, 16, Article ID: 874750. https://doi.org/10.3389/fnins.2022.874750
|
[33]
|
Chaudhry, F.A., Reimer, R.J., Krizaj, D., Barber, D., Storm-Mathisen, J., Copenhagen, D.R., et al. (1999) Molecular Analysis of System N Suggests Novel Physiological Roles in Nitrogen Metabolism and Synaptic Transmission. Cell, 99, 769-780. https://doi.org/10.1016/s0092-8674(00)81674-8
|
[34]
|
Chaudhry, F.A., Schmitz, D., Reimer, R.J., Larsson, P., Gray, A.T., Nicoll, R., et al. (2002) Glutamine Uptake by Neurons: Interaction of Protons with System a Transporters. The Journal of Neuroscience, 22, 62-72. https://doi.org/10.1523/jneurosci.22-01-00062.2002
|
[35]
|
Mackenzie, B., Schäfer, M.K.-., Erickson, J.D., Hediger, M.A., Weihe, E. and Varoqui, H. (2003) Functional Properties and Cellular Distribution of the System a Glutamine Transporter SNAT1 Support Specialized Roles in Central Neurons. Journal of Biological Chemistry, 278, 23720-23730. https://doi.org/10.1074/jbc.m212718200
|
[36]
|
Meynial-Denis, D., Bielicki, G., Beaufrère, A., Mignon, M., Patureau Mirand, P. and Renou, J. (2013) Glutamate and CO2 Production from Glutamine in Incubated Enterocytes of Adult and Very Old Rats. The Journal of Nutritional Biochemistry, 24, 688-692. https://doi.org/10.1016/j.jnutbio.2012.03.019
|
[37]
|
Coëffier, M., Miralles-Barrachina, O., Le Pessot, F., Lalaude, O., Daveau, M., Lavoinne, A., et al. (2001) Influence of Glutamine on Cytokine Production by Human Gut in Vitro. Cytokine, 13, 148-154. https://doi.org/10.1006/cyto.2000.0813
|
[38]
|
de Oliveira Santos, R., da Silva Cardoso, G., da Costa Lima, L., de Sousa Cavalcante, M.L., Silva, M.S., Cavalcante, A.K.M., et al. (2020) L-Glutamine and Physical Exercise Prevent Intestinal Inflammation and Oxidative Stress without Improving Gastric Dysmotility in Rats with Ulcerative Colitis. Inflammation, 44, 617-632. https://doi.org/10.1007/s10753-020-01361-3
|
[39]
|
Ghouzali, I., Lemaitre, C., Bahlouli, W., Azhar, S., Bôle-Feysot, C., Meleine, M., et al. (2017) Targeting Immunoproteasome and Glutamine Supplementation Prevent Intestinal Hyperpermeability. Biochimica et Biophysica Acta (BBA)—General Subjects, 1861, 3278-3288. https://doi.org/10.1016/j.bbagen.2016.08.010
|
[40]
|
Bertrand, J., Marion‐Letellier, R., Azhar, S., Chan, P., Legrand, R., Goichon, A., et al. (2015) Glutamine Enema Regulates Colonic Ubiquitinated Proteins but Not Proteasome Activities during TNBS‐Induced Colitis Leading to Increased Mitochondrial Activity. Proteomics, 15, 2198-2210. https://doi.org/10.1002/pmic.201400304
|
[41]
|
Xu, H., Liu, G., Gu, H., Wang, J. and Li, Y. (2020) Glutamine Protects Intestine against Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress Induced Apoptosis in Rats. Acta Cirúrgica Brasileira, 35, e202000104. https://doi.org/10.1590/s0102-865020200010000004
|
[42]
|
Vollmar, B. and Menger, M.D. (2010) Intestinal Ischemia/Reperfusion: Microcirculatory Pathology and Functional Consequences. Langenbeck's Archives of Surgery, 396, 13-29. https://doi.org/10.1007/s00423-010-0727-x
|
[43]
|
Gonzalez, L.M., Moeser, A.J. and Blikslager, A.T. (2015) Animal Models of Ischemia-Reperfusion-Induced Intestinal Injury: Progress and Promise for Translational Research. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308, G63-G75. https://doi.org/10.1152/ajpgi.00112.2013
|
[44]
|
Zabot, G.P., Carvalhal, G.F., Marroni, N.P., et al. (2014) Glutamine Prevents Oxidative Stress in a Model of Mesenteric Ischemia and Reperfusion. World Journal of Gastroenterology, 20, 11406-11414. https://doi.org/10.3748/wjg.v20.i32.11406
|
[45]
|
Lee, B., Diaz, G.A., Rhead, W., Lichter-Konecki, U., Feigenbaum, A., Berry, S.A., et al. (2016) Glutamine and Hyperammonemic Crises in Patients with Urea Cycle Disorders. Molecular Genetics and Metabolism, 117, 27-32. https://doi.org/10.1016/j.ymgme.2015.11.005
|
[46]
|
Colomer, M.C. (2004) Disorders of Urea Cycle: Alternative Metabolic Pathways. Offarm: Farmacia y Sociedad, 23, 136-138. (In Spanish)
|
[47]
|
Parola, M. and Pinzani, M. (2019) Liver Fibrosis: Pathophysiology, Pathogenetic Targets and Clinical Issues. Molecular Aspects of Medicine, 65, 37-55. https://doi.org/10.1016/j.mam.2018.09.002
|
[48]
|
Zhang, M., Serna-Salas, S., Damba, T., Borghesan, M., Demaria, M. and Moshage, H. (2021) Hepatic Stellate Cell Senescence in Liver Fibrosis: Characteristics, Mechanisms and Perspectives. Mechanisms of Ageing and Development, 199, Article ID: 111572. https://doi.org/10.1016/j.mad.2021.111572
|
[49]
|
Li, J., Ghazwani, M., Liu, K., Huang, Y., Chang, N., Fan, J., et al. (2017) Regulation of Hepatic Stellate Cell Proliferation and Activation by Glutamine Metabolism. PLOS ONE, 12, e0182679. https://doi.org/10.1371/journal.pone.0182679
|
[50]
|
Shrestha, N., Chand, L., Han, M.K., Lee, S.O., Kim, C.Y. and Jeong, Y.J. (2016) Glutamine Inhibits CCl4 Induced Liver Fibrosis in Mice and TGF-β1 Mediated Epithelial-Mesenchymal Transition in Mouse Hepatocytes. Food and Chemical Toxicology, 93, 129-137. https://doi.org/10.1016/j.fct.2016.04.024
|
[51]
|
Hopkins, E., Sanvictores, T. and Sharma, S. (2022) Physiology, Acid Base Balance. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK507807/
|
[52]
|
Sánchez, J.S., Peniche-Moguel, K.G., et al. (2022) Metabolic Acidosis: From Beginning to the End. Medicina Interna de México, 38, 1050-1062. https://doi.org/10.24245/mim.v38i5.4802. In Spanish
|
[53]
|
Weiner, I.D. and Verlander, J.W. (2013) Renal Ammonia Metabolism and Transport. Comparative Physiology, 3, 201-220. https://doi.org/10.1002/cphy.c120010
|
[54]
|
Harris, A.N., Shankar, M., Melanmed, M. and Batlle, D. (2023) An Update on Kidney Ammonium Transport along the Nephron. Advances in Kidney Disease and Health, 30, 189-196. https://doi.org/10.1053/j.akdh.2022.12.005
|
[55]
|
Moret, C., Dave, M.H., Schulz, N., Jiang, J.X., Verrey, F. and Wagner, C.A. (2007) Regulation of Renal Amino Acid Transporters during Metabolic Acidosis. American Journal of Physiology-Renal Physiology, 292, F555-F566. https://doi.org/10.1152/ajprenal.00113.2006
|
[56]
|
Busque, S.M. and Wagner, C.A. (2009) Potassium Restriction, High Protein Intake, and Metabolic Acidosis Increase Expression of the Glutamine Transporter SNAT3 (slc38a3) in Mouse Kidney. American Journal of Physiology-Renal Physiology, 297, F440-F450. https://doi.org/10.1152/ajprenal.90318.2008
|
[57]
|
Hankard, R.G., Haymond, M.W. and Darmaun, D. (1997) Role of Glutamine as a Glucose Precursor in Fasting Humans. Diabetes, 46, 1535-1541. https://doi.org/10.2337/diacare.46.10.1535
|
[58]
|
Stumvoll, M., Perriello, G., Meyer, C. and Gerich, J. (1999) Role of Glutamine in Human Carbohydrate Metabolism in Kidney and Other Tissues. Kidney International, 55, 778-792. https://doi.org/10.1046/j.1523-1755.1999.055003778.x
|
[59]
|
Stumvoll, M., Meyer, C., Mitrakou, A., Nadkarni, V. and Gerich, J.E. (1997) Renal Glucose Production and Utilization: New Aspects in Humans. Diabetologia, 40, 749-757. https://doi.org/10.1007/s001250050745
|
[60]
|
Mitrakou, A. (2011) Kidney: Its Impact on Glucose Homeostasis and Hormonal Regulation. Diabetes Research and Clinical Practice, 93, S66-S72. https://doi.org/10.1016/s0168-8227(11)70016-x
|
[61]
|
Nurjhan, N., Bucci, A., Perriello, G., Stumvoll, M., Dailey, G., Bier, D.M., et al. (1995) Glutamine: A Major Gluconeogenic Precursor and Vehicle for Interorgan Carbon Transport in Man. Journal of Clinical Investigation, 95, 272-277. https://doi.org/10.1172/jci117651
|
[62]
|
Mendiola, A.V. and Cruz, I.S. (2015) Energetic Metabolism and Cancer. Vertientes. Revista Especializada en Ciencias de la Salud, 17, 108-113. (In Spanish) https://www.revistas.unam.mx/index.php/vertientes/article/view/51695
|
[63]
|
ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2022) 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care, 46, S19-S40. https://doi.org/10.2337/dc23-s002
|
[64]
|
Bataglini, C., Ramos Mariano, I., Azevedo, S.C.F., Freire, V.N., Natali, M.R.M., Dias Pedrosa, M.M., et al. (2021) Insulin Degludec and Glutamine Dipeptide Modify Glucose Homeostasis and Liver Metabolism in Diabetic Mice Undergoing Insulin-Induced Hypoglycemia. Journal of Applied Biomedicine, 19, 210-219. https://doi.org/10.32725/jab.2021.025
|
[65]
|
Bataglini, C., Rezende, D.G.L., Primo, M.A., Gomes, C.R.G., Pedrosa, M.M.D. and Godoi, V.A.F. (2017) Glutamine Dipeptide and Cortisol Change the Liver Glucose Metabolism and Reduce the Severity of Insulin-Induced Hypoglycaemia in Untreated T1DM Swiss Mice. Archives of Physiology and Biochemistry, 123, 134-144. https://doi.org/10.1080/13813455.2016.1273364
|
[66]
|
Felisberto-Junior, A.M., Manso, F.C., Gazola, V.A.F.d.G., Obici, S., Geisler, S.A. and Bazotte, R.B. (2009) Oral Glutamine Dipeptide Prevents against Prolonged Hypoglycemia Induced by Detemir Insulin in Rats. Biological and Pharmaceutical Bulletin, 32, 232-236. https://doi.org/10.1248/bpb.32.232
|
[67]
|
Mera-Flores, R.R., Colamarco-Delgado, D.C., Rivadeneira-Mendoza, Y., et al. (2021) General Aspects of Diabesity: Physiopathology and Treatment. Revista Cubana de Endocrinología, 35, e267. (In Spanish) https://doaj.org/article/654651ffea3e483298a98884b396c3ae
|
[68]
|
Dollet, L., Kuefner, M., Caria, E., Rizo-Roca, D., Pendergrast, L., Abdelmoez, A.M., et al. (2022) Glutamine Regulates Skeletal Muscle Immunometabolism in Type 2 Diabetes. Diabetes, 71, 624-636. https://doi.org/10.2337/db20-0814
|
[69]
|
Rada, C.R., Rodríguez, A.C., Roldán, C.C., et al. (2021) Analysis of the Relationship Between Type 2 Diabetes Mellitus and Obesity with Cardiovascular Risk Factors. Journal of Negative and No Positive Results, 6, 411-433. (In Spanish) https://doi.org/10.19230/jonnpr.3817
|
[70]
|
Shoelson, S.E., Lee, J. and Goldfine, A.B. (2006) Inflammation and Insulin Resistance. Journal of Clinical Investigation, 116, 1793-1801. https://doi.org/10.1172/jci29069
|
[71]
|
León-Pedroza, J.I., González-Tapia, L.A., del Olmo-Gil, E., Castellanos-Rodríguez, D., Escobedo, G. and González-Chávez, A. (2015) Low-Grade Systemic Inflammation and the Development of Metabolic Diseases: From the Molecular Evidence to the Clinical Practice. Cirugía y Cirujanos, 83, 543-551. https://doi.org/10.1016/j.circir.2015.05.041
|
[72]
|
Bastard, J., Maachi, M., Lagathu, C., et al. (2006) Recent Advances in the Relationship between Obesity, Inflammation, and Insulin Resistance. European Cytokine Network, 17, 4-12.
|
[73]
|
Castro, A.M., Macedo-de la Concha, L.E. and Pantoja-Meléndez, C.A. (2017) Low-grade Inflammation and Its Relation to Obesity and Chronic Degenerative Diseases. Revista Médica del Hospital General de México, 80, 101-105. https://doi.org/10.1016/j.hgmx.2016.06.011
|
[74]
|
Carvalho, B.M. and Abdalla Saad, M.J. (2013) Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance. Mediators of Inflammation, 2013, Article ID: 986734. https://doi.org/10.1155/2013/986734
|
[75]
|
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., et al. (2007) Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 56, 1761-1772. https://doi.org/10.2337/db06-1491
|
[76]
|
Abboud, K.Y., Reis, S.K., Martelli, M.E., Zordão, O.P., Tannihão, F., de Souza, A.Z.Z., et al. (2019) Oral Glutamine Supplementation Reduces Obesity, Pro-Inflammatory Markers, and Improves Insulin Sensitivity in DIO Wistar Rats and Reduces Waist Circumference in Overweight and Obese Humans. Nutrients, 11, Article No. 536. https://doi.org/10.3390/nu11030536
|
[77]
|
Park, S.W., Goodpaster, B.H., Lee, J.S., Kuller, L.H., Boudreau, R., de Rekeneire, N., et al. (2009) Excessive Loss of Skeletal Muscle Mass in Older Adults with Type 2 Diabetes. Diabetes Care, 32, 1993-1997. https://doi.org/10.2337/dc09-0264
|
[78]
|
Lee, C.G., Boyko, E.J., Strotmeyer, E.S., Lewis, C.E., Cawthon, P.M., Hoffman, A.R., et al. (2011) Association between Insulin Resistance and Lean Mass Loss and Fat Mass Gain in Older Men without Diabetes Mellitus. Journal of the American Geriatrics Society, 59, 1217-1224. https://doi.org/10.1111/j.1532-5415.2011.03472.x
|
[79]
|
Mansour, A., Mohajeri-Tehrani, M.R., Qorbani, M., Heshmat, R., Larijani, B. and Hosseini, S. (2015) Effect of Glutamine Supplementation on Cardiovascular Risk Factors in Patients with Type 2 Diabetes. Nutrition, 31, 119-126. https://doi.org/10.1016/j.nut.2014.05.014
|
[80]
|
Holst, J.J. and Deacon, C.F. (2004) Glucagon-Like Peptide 1 and Inhibitors of Dipeptidyl Peptidase IV in the Treatment of Type 2 Diabetes Mellitus. Current Opinion in Pharmacology, 4, 589-596. https://doi.org/10.1016/j.coph.2004.08.005
|
[81]
|
Nauck, M.A., Baller, B. and Meier, J.J. (2004) Gastric Inhibitory Polypeptide and Glucagon-Like Peptide-1 in the Pathogenesis of Type 2 Diabetes. Diabetes, 53, S190-S196. https://doi.org/10.2337/diabetes.53.suppl_3.s190
|
[82]
|
Vilsbøll, T., Krarup, T., Deacon, C.F., Madsbad, S. and Holst, J.J. (2001) Reduced Postprandial Concentrations of Intact Biologically Active Glucagon-Like Peptide 1 in Type 2 Diabetic Patients. Diabetes, 50, 609-613. https://doi.org/10.2337/diabetes.50.3.609
|
[83]
|
Samocha-Bonet, D., Wong, O., Synnott, E., Piyaratna, N., Douglas, A., Gribble, F.M., et al. (2011) Glutamine Reduces Postprandial Glycemia and Augments the Glucagon-Like Peptide-1 Response in Type 2 Diabetes Patients. The Journal of Nutrition, 141, 1233-1238. https://doi.org/10.3945/jn.111.139824
|
[84]
|
Samocha-Bonet, D., Chisholm, D.J., Gribble, F.M., Coster, A.C.F., Carpenter, K.H., Jones, G.R.D., et al. (2014) Glycemic Effects and Safety of L-Glutamine Supplementation with or without Sitagliptin in Type 2 Diabetes Patients—A Randomized Study. PLOS ONE, 9, e113366. https://doi.org/10.1371/journal.pone.0113366
|
[85]
|
Reimann, F., Williams, L., da Silva Xavier, G., Rutter, G.A. and Gribble, F.M. (2004) Glutamine Potently Stimulates Glucagon-Like Peptide-1 Secretion from GLUTag Cells. Diabetologia, 47, 1592-1601. https://doi.org/10.1007/s00125-004-1498-0
|
[86]
|
Greenfield, J.R., Farooqi, I.S., Keogh, J.M., Henning, E., Habib, A.M., Blackwood, A., et al. (2009) Oral Glutamine Increases Circulating Glucagon-Like Peptide 1, Glucagon, and Insulin Concentrations in Lean, Obese, and Type 2 Diabetic Subjects. The American Journal of Clinical Nutrition, 89, 106-113. https://doi.org/10.3945/ajcn.2008.26362
|
[87]
|
Cervantes-Villagrana, R.D. and Presno-Bernal, J.M. (2013) Pathophysiology of Diabetes and Pancreatic β-Cell Death Mechanisms. Revista de Endocrinología y Nutrición, 21, 98-106. https://www.medigraphic.com/pdfs/endoc/er-2013/er133a.pdf
|
[88]
|
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., et al. (2020) Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21, Article No. 6275. https://doi.org/10.3390/ijms21176275
|
[89]
|
Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., Papakonstantinou, E.J., Salamou, E. and Guzman, E. (2023) Insulin Resistance and Cardiovascular Disease. Journal of International Medical Research, 51, 1-49. https://doi.org/10.1177/03000605231164548
|
[90]
|
Durante, W. (2019) The Emerging Role of L-Glutamine in Cardiovascular Health and Disease. Nutrients, 11, Article No. 2092. https://doi.org/10.3390/nu11092092
|
[91]
|
Garcia-Espinoza, J.A., Aguilar-Aragon, V.B., Ortiz-Villalobos, E.H., et al. (2017) Burns: Definition, Classification, Pathophysiology and Initial Approach. International Journal of General Medicine, 5, Article ID: 1000298.
|
[92]
|
WHO (2023) Burns. https://www.who.int/news-room/fact-sheets/detail/burns
|
[93]
|
Jeschke, M.G., Mlcak, R.P., Finnerty, C.C., Norbury, W.B., Gauglitz, G.G., Kulp, G.A., et al. (2007) Burn Size Determines the Inflammatory and Hypermetabolic Response. Critical Care, 11, R90. https://doi.org/10.1186/cc6102
|
[94]
|
Abdullahi, A., Patsouris, D., Costford, S.R. and Jeschke, M.G. (2016) Hypermetabolic Response to Burn Injury. In: Preiser, J.C., Ed, The Stress Response of Critical Illness: Metabolic and Hormonal Aspects, Springer International Publishing, 227-245. https://doi.org/10.1007/978-3-319-27687-8_19
|
[95]
|
Stanojcic, M., Abdullahi, A., Rehou, S., Parousis, A. and Jeschke, M.G. (2018) Pathophysiological Response to Burn Injury in Adults. Annals of Surgery, 267, 576-584. https://doi.org/10.1097/sla.0000000000002097
|
[96]
|
Wang, Z.E., Zheng, J.J., Bin Feng, J., Wu, D., Su, S., Yang, Y.J., et al. (2022) Glutamine Relieves the Hypermetabolic Response and Reduces Organ Damage in Severe Burn Patients: A Multicenter, Randomized Controlled Clinical Trial. Burns, 48, 1606-1617. https://doi.org/10.1016/j.burns.2021.12.005
|
[97]
|
Yang, G., Zhang, Y., Wu, D., et al. (2019) 1H-NMR Metabolomics Identifies Significant Changes in Hypermetabolism after Glutamine Administration in Burned Rats. American Journal of Translational Research, 11, 7286-7299.
|
[98]
|
Peng, X., Yan, H., You, Z., Wang, P. and Wang, S. (2005) Clinical and Protein Metabolic Efficacy of Glutamine Granules-Supplemented Enteral Nutrition in Severely Burned Patients. Burns, 31, 342-346. https://doi.org/10.1016/j.burns.2004.10.027
|
[99]
|
Wang, Z., Wu, D., Zheng, L., et al. (2018) Effects of Glutamine on Intestinal Mucus Barrier after Burn Injury. American Journal of Translational Research, 10, 3833-3846.
|
[100]
|
Catherine Sánchez, N. (2013) Knowing and Understanding the Cancerous Cell: Physiopathology of Cancer. Revista Médica Clínica Las Condes, 24, 553-562. https://doi.org/10.1016/s0716-8640(13)70659-x
|
[101]
|
Vaghari‐Tabari, M., Ferns, G.A., Qujeq, D., Andevari, A.N., Sabahi, Z. and Moein, S. (2021) Signaling, Metabolism, and Cancer: An Important Relationship for Therapeutic Intervention. Journal of Cellular Physiology, 236, 5512-5532. https://doi.org/10.1002/jcp.30276
|
[102]
|
Li, X., Peng, X., Li, Y., Wei, S., He, G., Liu, J., et al. (2024) Glutamine Addiction in Tumor Cell: Oncogene Regulation and Clinical Treatment. Cell Communication and Signaling, 22, Article No. 12. https://doi.org/10.1186/s12964-023-01449-x
|
[103]
|
Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 19, 163-194. https://doi.org/10.1146/annurev-bioeng-071516-044546
|
[104]
|
Hensley, C.T., Wasti, A.T. and DeBerardinis, R.J. (2013) Glutamine and Cancer: Cell Biology, Physiology, and Clinical Opportunities. Journal of Clinical Investigation, 123, 3678-3684. https://doi.org/10.1172/jci69600
|
[105]
|
Wu, G., Lupton, J.R., Turner, N.D., Fang, Y. and Yang, S. (2004) Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134, 489-492. https://doi.org/10.1093/jn/134.3.489
|
[106]
|
Daye, D. and Wellen, K.E. (2012) Metabolic Reprogramming in Cancer: Unraveling the Role of Glutamine in Tumorigenesis. Seminars in Cell & Developmental Biology, 23, 362-369. https://doi.org/10.1016/j.semcdb.2012.02.002
|
[107]
|
Gorrini, C., Harris, I.S. and Mak, T.W. (2013) Modulation of Oxidative Stress as an Anticancer Strategy. Nature Reviews Drug Discovery, 12, 931-947. https://doi.org/10.1038/nrd4002
|
[108]
|
Wise, D.R., DeBerardinis, R.J., Mancuso, A., Sayed, N., Zhang, X., Pfeiffer, H.K., et al. (2008) Myc Regulates a Transcriptional Program That Stimulates Mitochondrial Glutaminolysis and Leads to Glutamine Addiction. Proceedings of the National Academy of Sciences, 105, 18782-18787. https://doi.org/10.1073/pnas.0810199105
|
[109]
|
Son, J., Lyssiotis, C.A., Ying, H., Wang, X., Hua, S., Ligorio, M., et al. (2013) Glutamine Supports Pancreatic Cancer Growth through a KRAS-Regulated Metabolic Pathway. Nature, 496, 101-105. https://doi.org/10.1038/nature12040
|
[110]
|
Kim, J., Tchernyshyov, I., Semenza, G.L. and Dang, C.V. (2006) HIF-1-Mediated Expression of Pyruvate Dehydrogenase Kinase: A Metabolic Switch Required for Cellular Adaptation to Hypoxia. Cell Metabolism, 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
|
[111]
|
Sun, R.C. and Denko, N.C. (2014) Hypoxic Regulation of Glutamine Metabolism through HIF1 and SIAH2 Supports Lipid Synthesis That Is Necessary for Tumor Growth. Cell Metabolism, 19, 285-292. https://doi.org/10.1016/j.cmet.2013.11.022
|
[112]
|
Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A. and Feng, Z. (2010) Glutaminase 2, a Novel P53 Target Gene Regulating Energy Metabolism and Antioxidant Function. Proceedings of the National Academy of Sciences, 107, 7455-7460. https://doi.org/10.1073/pnas.1001006107
|
[113]
|
Kim, M.H. and Kim, H. (2013) Oncogenes and Tumor Suppressors Regulate Glutamine Metabolism in Cancer Cells. Journal of Cancer Prevention, 18, 221-226. https://doi.org/10.15430/jcp.2013.18.3.221
|
[114]
|
Li, T., Copeland, C. and Le, A. (2021) Glutamine Metabolism in Cancer. In: Le, A., Ed., The Heterogeneity of Cancer Metabolism, Springer International Publishing, 17-38. https://doi.org/10.1007/978-3-030-65768-0_2
|
[115]
|
Jin, J., Byun, J., Choi, Y. and Park, K. (2023) Targeting Glutamine Metabolism as a Therapeutic Strategy for Cancer. Experimental & Molecular Medicine, 55, 706-715. https://doi.org/10.1038/s12276-023-00971-9
|
[116]
|
Altman, B.J., Stine, Z.E. and Dang, C.V. (2016) From Krebs to Clinic: Glutamine Metabolism to Cancer Therapy. Nature Reviews Cancer, 16, 619-634. https://doi.org/10.1038/nrc.2016.71
|
[117]
|
Lemberg, A. and Alejandra Fernández, M. (2009) Hepatic Encephalopathy, Ammonia, Glutamate, Glutamine and Oxidative Stress. Annals of Hepatology, 8, 95-102. https://doi.org/10.1016/s1665-2681(19)31785-5
|
[118]
|
Jayakumar, A.R. and Norenberg, M.D. (2012) Oxidative Stress in Hepatic Encephalopathy. In: Mullen, K. and Prakash, R., Eds., Hepatic Encephalopathy, Humana Press, 47-70. https://doi.org/10.1007/978-1-61779-836-8_5
|
[119]
|
Rama Rao, K.V. and Norenberg, M.D. (2013) Glutamine in the Pathogenesis of Hepatic Encephalopathy: The Trojan Horse Hypothesis Revisited. Neurochemical Research, 39, 593-598. https://doi.org/10.1007/s11064-012-0955-2
|
[120]
|
Jover, M., Hoyas, E., Grande, L., et al. (2009) Minimal Hepatic Encephalopaty. Revista de Gastroenterología de México, 74, 26-34. (In Spanish)
|
[121]
|
Rama Rao, K.V., Jayakumar, A.R. and Norenberg, M.D. (2012) Glutamine in the Pathogenesis of Acute Hepatic Encephalopathy. Neurochemistry International, 61, 575-580. https://doi.org/10.1016/j.neuint.2012.01.012
|
[122]
|
Albrecht, J. and Norenberg, M.D. (2006) Glutamine: A Trojan Horse in Ammonia Neurotoxicity. Hepatology, 44, 788-794. https://doi.org/10.1002/hep.21357
|
[123]
|
Warren, K.S. and Schenker, S. (1964) Effect of an Inhibitor of Glutamine Synthesis (Methionine Sulfoximine) on Ammonia Toxicity and Metabolism. The Journal of Laboratory and Clinical Medicine, 64, 442-449.
|
[124]
|
Albrecht, J. and Norenberg, M.D. (2010) Glutamine as a Mediator of Ammonia Neurotoxicity: A Critical Appraisal. Biochemical Pharmacology, 80, 1303-1308.
|
[125]
|
Rama Rao, K.V., Jayakumar, A.R. and Norenberg, M.D. (2003) Induction of the Mitochondrial Permeability Transition in Cultured Astrocytes by Glutamine. Neurochemistry International, 43, 517-523. https://doi.org/10.1016/s0197-0186(03)00042-1
|
[126]
|
Angelova, P.R., Kerbert, A.J.C., Habtesion, A., Hall, A., Abramov, A.Y. and Jalan, R. (2022) Hyperammonaemia Induces Mitochondrial Dysfunction and Neuronal Cell Death. JHEP Reports, 4, Article ID: 100510. https://doi.org/10.1016/j.jhepr.2022.100510
|
[127]
|
Schipke, C.G., Ohlemeyer, C., Matyash, M., Nolte, C., Kettenmann, H. and Kirchhoff, F. (2001) Astrocytes of the Mouse Neocortex Express Functional N‐methyl‐d‐aspartate Receptors. The FASEB Journal, 15, 1270-1272. https://doi.org/10.1096/fj.00-0439fje
|
[128]
|
Jewett, B.E. and Thapa, B. (2022) Physiology, NMDA Receptor. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK519495/
|
[129]
|
Sepehrinezhad, A., Zarifkar, A., Namvar, G., Shahbazi, A. and Williams, R. (2020) Astrocyte Swelling in Hepatic Encephalopathy: Molecular Perspective of Cytotoxic Edema. Metabolic Brain Disease, 35, 559-578. https://doi.org/10.1007/s11011-020-00549-8
|
[130]
|
Kosenko, E., Llansola, M., Montoliu, C., Monfort, P., Rodrigo, R., Hernandez-Viadel, M., et al. (2003) Glutamine Synthetase Activity and Glutamine Content in Brain: Modulation by NMDA Receptors and Nitric Oxide. Neurochemistry International, 43, 493-499. https://doi.org/10.1016/s0197-0186(03)00039-1
|
[131]
|
Bosoi, C.R., Zwingmann, C., Marin, H., Parent-Robitaille, C., Huynh, J., Tremblay, M., et al. (2014) Increased Brain Lactate Is Central to the Development of Brain Edema in Rats with Chronic Liver Disease. Journal of Hepatology, 60, 554-560. https://doi.org/10.1016/j.jhep.2013.10.011
|
[132]
|
Moran, S., López-Sánchez, M., Milke-García, M.d.P. and Rodríguez-Leal, G. (2021) Current Approach to Treatment of Minimal Hepatic Encephalopathy in Patients with Liver Cirrhosis. World Journal of Gastroenterology, 27, 3050-3063. https://doi.org/10.3748/wjg.v27.i22.3050
|
[133]
|
Irimia, R., Stanciu, C., Cojocariu, C., et al. (2013) Oral Glutamine Challenge Improves the Performance of Psychometric Tests for the Diagnosis of Minimal Hepatic Encephalopathy in Patients with Liver Cirrhosis. Journal of Gastrointestinal and Liver Diseases, 22, 277-281.
|