Journal of Applied Mathematics and Physics, 2013, 1, 79-84
Published Online November 2013 (http://www.scirp.org/journal/jamp)
http://dx.doi.org/10.4236/jamp.2013.15012
Open Access JAMP
Error Estimates for the Difference Method to System of
Ordinary Differential Equations with Boundary Layer
Ilhame Amirali
Department of Mathematics, Faculty of Art and Science, Sinop University, Sinop, Turkey
Email: ailhame@gmail.com
Received August 14, 2013; revised September 15, 2013; accepted October 1, 2013
Copyright © 2013 Ilhame Amirali. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT
This work deals with the numerical solution of singular perturbation system of ordinary differential equations with
boundary layer. For the numerical solution of this problem fitted finite difference scheme on a uniform mesh is
constructed and an alyzed. The uniform error estimates for the approximate solution are ob tained.
Keywords: Singular Perturbation; Linear System; Difference Scheme; Uniform Convergence; Error Estimates
1. Introduction
We consider the initial-boundary value problem for the
linear system of ordinary differential equations in the
interval :
[0,1]
 
 
111
11
:
, 01,
Luuax ubxu
cxv fxx
 
 
 
(1)
 
 
222
22
:
, 01,
Lvvax vbx v
cxufx x
 
 
 
(2)
 
1
1
00, B
uAu ,
(3)
 
22
0, 1
A
vv
.B (4)
where
is a small parameter, 1
A
, 2
A
, , are
given constants. The functions
1
B
0,
2
B

ii
ax
x
i
b,
,

i
cx

i
f
x are given functions satisfying
1, 2i
certain regularity conditions will be specified whenever
necessarily.
The above type initial/boundary value problems arise
in many areas of mechanics and physics [1,2].
Differential equations with a small parameter
mul-
tiplying the highest-order derivative terms are said to be
singularly perturbed. They occur frequently in mathe-
matical problems in the sciences and engineering for
example, in fluid flow at high Reynold number, electrical
networks, chemical reactions, control theory, the equa-
tions governing flow in porous media, the drift-diffusion
equations of semi-conductor device physics, and other
physical models. The mathematical models describing
these phenomena contain a small parameter
and the
influence of this parameter reveal itself in a sudden
change of the dependent variable u
taking place with
in a small layer. That is, the solution of this type of
problem has a narrow region in which the solution
changes rapidly and the outside solution changes smooth-
ly [1-3].
It is well-known that standard discretization methods
do not work well for these problems as they often pro-
duce oscillatory solutions which are inaccurate if the
perturbed parameter
is small. To obtain robust nu-
merical methods, it is necessary to fix the coefficients
(fitted operator methods) or the mesh (fitted mesh meth-
ods) to the behavior of the exact solution [2,4].
In this present paper, we analyze the numerical solu-
tion of the initial/boundary problem (1)-(4). The nu meri-
cal method presented here comprises a fitted difference
scheme on a uniform mesh. Fitted operator method is
widely used to construct and analyse uniform difference
methods, especially for a linear differential problems (see,
e.g., [4-7]). In the Section 2, we state some important
properties of the exact solution. The derivations of the
difference scheme and uniform convergence analysis
have been given in Section 3. Uniform convergence is
proved in the discrete maximum norm. The approach to
the construction of the discrete problem and the error
I. AMIRALI
80
analysis for the approximate solu tion are similar to those
in [8,9].
Difference schemes for singularly perturbed systems
with another type of initial/boundary conditions were
investigated in [3,6,9-11].
Throughout the paper, C will denote a generic positive
constant independent of
and of the mesh parameter.
2. Analytical Results
Lemma 2.1. Under the


1
12121 1
exp 1cc b
 
 

the solution of the problem (1)-(4) satisfies
,uC
(5)

1
1
1exp x
ux C








,
(6)
,vC
(7)

2
1
1exp .
vx C








(8)
Here


0,1
max
g
gx
for any continuous functions

g
x.
Proof. First we prove that for the solution of ini-
tial-value problem of the type
 

11 1
F
xcxvxfx
the following estimates hold
11
11 111
11
1111
exp
,
ubA
vc f





 


 




11
11111111 1
111
1111111
11
1111 1
exp exp
1exp 1
exp 1
ux
bbAb bB
xBbbc
bb f





 

1
v


 

 

(10)
Using the function

22 2
F
xcxuxfx, to
prove (10) after some manipulations we have
11 1
222 2222
,vAcuf B
 
 

 
(11)




211 1
22222
11
2222222
exp 1
.
Ax
vx b
cu fbAB
 


 

 

 



(12)
Hence






 
11
11 1
11
1111
11
12121 1
11
1211 12
11 1
11 11111
1exp
exp
exp
exp
exp exp
up bA
bB
cA b
cb f
bBb f

 
 
 




 



and





111 1
222 2111
11
21121
111
1221112 22
1ex
exp
exp .
vpAcAb
bcB
cbf fB


 
 




 
 

p
B
(9)
Then from (9)-(12) the following estimates hold

 






 

111
1
111 1 111111
1
1111 11
1 11112222 11122 1
1
111
1112211 12221111
expexp exp
exp1 1exp
expexpexp1 ,
x
uxbb AbBbB
bbcpA cAbcB
bcbffBbb
 
 
 

 
 
 


 

 




 
 
1
f











 


1
211 1
122121111
11
11 1
11 1112121 112111 1
111 1
11112111 1222 111
1
12 21
expexp11 exp
expexp exp
exp expexp
exp
Ax
vxbbc pbA
bBcAbcf b
bcB bffcBb
cb
 

 
 
 
 
 

 

 



 


 


1
1

111
1122222 2
.ffb AB


 
 
Open Access JAMP
I. AMIRALI 81
The last inequalities show the validity of (5)-(8).
3. The Difference Scheme and Convergence
Now we construct the difference scheme and investigate
it. In what follow, we denote by
the uniform mesh in
:
[0,1]
,1,2,,1,1
hi
x
ih iNhN
 
And
0, .
x
l

 Before describing our nu-
merical method, we introduce some notation for the mesh
functio ns . F or any mesh function g(x), we use

,
ii
g
gx
1
,,
ii
xi
gg
gh
1
,,
ii
xi
g
g
gh
11
,,
2
oii
xi
gg
gh

11
,2
2,
iii
xx i
ggg
gh


,,,
max .
i
doiN
g
gg


On
we propose the following difference scheme
for approximating (1)-(4):

1
1,1 1
,
11
,1,2,,1
o
ii
hii xxii
xi
ii
i
LUUaU bU
cVf iN


 ,
(13)

2
2,2 2
,
22
,1,2,,1
o
ii
hii xxii
xi
ii
i
LVVaV bV
cUfiN


 ,
(14)






1
1
22
1
,110 11
2
10 1
,
10 0
0,
o
xo
UA
h
Ua Bb
hf
10
h



 


(15)


22
,0 2
2
1exp 0
,
0
xN
h
Aa
VV
h








B
(16)
where

 

coth,1,2 .
22
k
ikiki
hh
ax axk


Note that
  

22
1,
2
kk
ikiki
ah


where

 
1
1exp1 ,
kik i
ki
h
ax
axh


 





 

1
21exp, 1,2.
kik iki
h
ax k
axh


 




Throughout the paper, we assume that

11
2121 11
41,4expcc b
 



1*
.
1
i
2
i
For solving of the (13)-(16), we giving the following
iterative procedure:
 
1
11,
nn
i
hii
LU cVf
 (17)
 
22.
nn
i
hi i
LV cUf (18)
 




01
1
22
1
1
,0201 1110
2
10 1
,
10
0
n
n
x
UA
ah h
UBb
hf
A



 


(19)



22
,0 2
2
1exp 0, ,
0
n
xN
Aah
VV
ah

B
(20)
where is arbitrary.

0
i
V
Lemma 2.2. The iteration (18)-(21) is suitable for the
solution of the problem (13)-(16) and the solution of the
difference problem (13)-(16) satisfies
 
110
1,
1
n
n
UU VV

 
(21)
 
110
.
1
n
n
VV VV
 
(22)
Proof. Denoting
 
11
11
,
nnnnnn
iiiiii
UU VV



we will have
 
1
11
, 2,,
nn
hi
ii
Lcn

N
n
(23)
 
12
,
n
hi
ii
Lc
(24)
 
0,0
0,
nn
x

(25)
 
,0 0, 0
nn
xN


1n
i
(26)
From (23)-(26) and , it is not difficult to
get 1ii
Rc
 
1
1
11
,
jj
nn
i
ii
ii
hR hc
 



and thereby
  
11
11
.
nn
c
 

n


In similar manner, from (24), (26) and

2n
i
ii
Fc
we
also obtain
Open Access JAMP
I. AMIRALI
82
 
1
22 2
4, .
n
nn
c
 


Hence,
The using each of these into another immediatelleads
to (27) and (28).
Lemma 2.4. For the truncation errors
   
11
12
1
, .
n
n
nn


 

The limit case for leads to .
H
i
The limit functions will be solution of scheme
(1 d (2)
n

,
i
 
,0
nn

hy sequencesence the sequences
 
i
U are Cauc
and convergent:
lim
V
 
, lim.
nn
ii i
nn
UU VV
 

,
ii
UV
3)-(16).
Now we prove (21 ) an2. We have
 
 






11
10
121
1
10
11 2
1
10
1
1
110
1
1
1
.
1
nm n
UU
nm nmnn
nm nmn
nm m
m
n
n
UU UU
VV
VV
VV
VV
 
 


 

 
 
 




The limit case for leads to (21). The inequal-
ity alo
m
(22) is being proved angously.
Lemma 2.3. The solution of the difference problem
(13)-(16) satisfies



1

 11
,0 2 1
11
2,021 2
11
14
,
x
NN
ii
xii
uUc
VhfhfB










(27)



12
1
2,02
11
1,012 2
11
41
.
x
NN
ii
xii
vVc
UhfhfB
 










(28)
Proof. After setting and
11
ii
ii
RfcV
22
ii
ii
F
fcU we will get
1
1,0 11
1,
Ni
xi
UUcVh


f





12
1
2,02
11
1,012 2
11
41
.
x
NN
ii
xii
VVc
UhfhfB
 




 






11 11,
ih
iii
RfxLuxcxvx 
i
  
22 2 2,
ih
ii
ii
Rf
xLvxcxux 






2
110
2
10 ,0
0
(0) ,
x
h
A
hfU
1
12
1
0110 11
10
h
ra Bb

 









22
2
0,
2
2,0
2
220
1exp 0
0
,
10
0
x
x
Aah
rV
ah
AV
h
a







the following estimates hold
 
11
11
11
11d
ii
ii
xx
i
xx
RCh huxxhvxx





 




d, (29)
 
1
1
1
i
x
i
RCh h

1
2d,
i
x
vxvx x



(30)




 
11
00
1
02
110
10
1d
xx
xx
Ch
rah
hux xvxx



 




(31)
d,




 
11
00
2
02
220
10
1d
xx
xx
Ch
rah
vx xux x



 




d.
(32)
Proof. We may write
1
x
x
(33)



 







 


1
1
1
1
1
1
1
1
1
111
1
111
1111
d
d
d
d,
i
i
i
i
i
i
i
i
x
iii
x
x
iii
x
x
ii
x
x
ii i
x
Rhaxaxuxxx
bxux x
hfxfxxx
hcxvxcxvxx




1
hb
xux
Open Access JAMP
I. AMIRALI 83



 










1
1
1
1
1
1
1
1
1
222 2
122 2
1222
1222
d
d
() d
d,
i
i
i
i
i
i
i
i
x
iii
x
x
iii
x
x
ii
x
x
ii i
x
Rh axaxvx xx
hbxvxbxvxx
hfxfx xx
hcxuxcxux x




x
x
(34)



 



 




 






1
0
1
0
1
0
1
0
1
02
110
2
1101
2
11 01
2
1101
2
101
1
10
00 d
0d
0d
d,
x
x
x
x
x
x
x
x
rh
a
bxuxbuxx
ax auxxx
fx fxx
cxvx xx







(35)



 




  

 





1
0
11
00
1
0
2
02
220
2
22 02
2
202202
2
202
1
10
0d
d
d,
x
x
xx
xx
x
x
rh
a
ax avxxx
bxvxxxfx xx
cxux xx








2
d
where
(36)







1
1
11
21
11
e1
,,
e1
1e ,,
1e
0, ,.
ik i
ik
ik i
ah
ik
axx
iki i
ah
ax x
ik ikii
ii
x
xxx
xx
xxx




 
xx
The relations (33)-(36) leads immediately to (29)-(32).
Theorem 2.3. Let
  
,,
k
ax , 0,
kkk
bxcxfx C1. Then the solution
of the difference problem (13)-(16) converges uniformly
in
to the solution of (1)-(4) with rate
Proof. Let
12
, .
iiiiii
zUuxzVvx

Then for the errors of the approximate solution
1,2; 0,
ki
zki N we have

, 1,1,
hi i
i
czR iN


1
10 1 ,00
2
0, ,
, 0,
x
zz
r
rz
11 1i
Lz 21
22 212
2,0 02
,
hii
ii
xN
Lz cz R
z


where are approximating errors from
Le


 
12
120 0
,, ,
ii
RRr r
mma 2.4. Using Lemma 2.3 we obtain
  
12
11
112 2
002
11
,
.
NN
ii
ii
zz
Cr rhfhf
 





1
(37)
By virtue that of (29)-(32) all terms in rit-hand side
of this inequality have the rate and hence the
proof follows immediately
RE
ion Techniques,”
Wiley, New York, 1993.
[2] E. R. Doolan, J. J. H. Miller and W. H. A. Schilders, “ Un i-
form Numerical Methods for Problems with Initia
Boundary Layers,” Boole Press, Dublin, 1980.
[3] I. G. Amiraliyeva, “Uniform Difference Scheme on the
2.39152
gh

Oh
FERENCES
[1] A. H. Nayfeh, “Introductions to Pertubat
l and
Singulary Pertubed System,” Applied Mathematics, Vol.
3, 2012, pp. 1029-1035.
http://dx.doi.org/10.4236/am.201
[4] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan
and G. I. Shish
for Boundary /CRC, New York,
H. Duru, “A Uniformly Con-
kin, “Robust Computational Techniques
Layers,” Chapman-Hall
2000.
[5] G. M. Amiraliyev and
vergent Finite Difference Method for a Initial Value Pro-
blem,” Applied Mathematics and Mechanics, Vol. 20, No.
4, 1999, pp. 363-370.
http://dx.doi.org/10.1007/BF02458564
[6] G. M. Amiraliyev, “The Convergence of a Finite Dif-
ference Method on Layeradapted Mesh for a Singulary
Pertubed System,” Applied Mathematics
tion, Vol. 162, No. 3, 2005, pp. 1023-1034and Computa-
.
http://dx.doi.org/10.1016/j.amc.2004.01.015
[7] H. G. Roos, M. Stynes and L. Tobiska, “Numerical Me-
thods for Singulary Pertubed Differential Equations, Con-
vection Diffusion and Flow Problems,” Springer-Verlag,
Berlin, 1996.
http://dx.doi.org/10.1007/978-3-662-03206-0
Open Access JAMP
I. AMIRALI
Open Access JAMP
84
tions,” Springer Verlag, New Yor k
612-0977-5
[8] R. E. O’Malley, “Singular Pertubations Methods for Or-
dinary Differential Equa
1991. ,
http://dx.doi.org/10.1007/978-1-4
1, 2007, pp.
.09.120
[9] S. Natesan and B. S. Deb, “A Robust Computational
Method for Singularly Pertubed Coupled System of Reac-
tion-Diffusion Boundary-value Problems,” Applied Ma-
thematics and Computation, Vol. 188, No.
353-364. http://dx.doi.org/10.1016/j.amc.2006
[10] S. Hemavathi, T. Bhuvaneswari, S. Valarmathi and J. J. H.
Miller, “A Parameter Uniform Numerical Method for a
System of Singul arly Pertubed Or dinary Differential E qu a-
tions,” Applied Mathematics and Computation, Vol. 191,
No. 1, 2007, pp. 1-11.
http://dx.doi.org/10.1016/j.amc.2006.05.218
[11] Z. D. Cen, A. M. Xu and A. B. Le, “A Second-Order
Hybrid Finite Difference Scheme for a System of Singu-
larly Pertubed Initial Value Problems,” Journal of Com-
putational and Applied Mathematics, Vol. 234, No. 12,
2010, pp. 3445-3457.
http://dx.doi.org/10.1016/j.cam.2010.05.006