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ABSTRACT

This work deals with the numerical solution of singular perturbation system of ordinary differential equations with
boundary layer. For the numerical solution of this problem fitted finite difference scheme on a uniform mesh is
constructed and analyzed. The uniform error estimates for the approximate solution are obtained.
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1. Introduction

We consider the initial-boundary value problem for the
linear system of ordinary differential equations in the
interval [0,1]:

Lu:=eu"+a,(x)u'+b (x)u

=c, (X)v+ f(x), 0<x<1, @
Lvi=ev'+a, (X)V' —b, (X)v )
=c,(x)u+f,(x), 0<x<1, @
u(0)= A, u'(0)=2, ®
V(=2 v=8, @

where & is a small parameter, A, A,, B, B, are
given constants. The functions a (x)>¢; >0, b(x),

¢ (x), fi(x) (i=12) are given functions satisfying
certain regularity conditions will be specified whenever
necessarily.

The above type initial/boundary value problems arise
in many areas of mechanics and physics [1,2].

Differential equations with a small parameter ¢ mul-
tiplying the highest-order derivative terms are said to be
singularly perturbed. They occur frequently in mathe-
matical problems in the sciences and engineering for
example, in fluid flow at high Reynold number, electrical
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networks, chemical reactions, control theory, the equa-
tions governing flow in porous media, the drift-diffusion
equations of semi-conductor device physics, and other
physical models. The mathematical models describing
these phenomena contain a small parameter ¢ and the
influence of this parameter reveal itself in a sudden
change of the dependent variable u, taking place with
in a small layer. That is, the solution of this type of
problem has a narrow region in which the solution
changes rapidly and the outside solution changes smooth-
ly [1-3].

It is well-known that standard discretization methods
do not work well for these problems as they often pro-
duce oscillatory solutions which are inaccurate if the
perturbed parameter ¢ is small. To obtain robust nu-
merical methods, it is necessary to fix the coefficients
(fitted operator methods) or the mesh (fitted mesh meth-
ods) to the behavior of the exact solution [2,4].

In this present paper, we analyze the numerical solu-
tion of the initial/boundary problem (1)-(4). The numeri-
cal method presented here comprises a fitted difference
scheme on a uniform mesh. Fitted operator method is
widely used to construct and analyse uniform difference
methods, especially for a linear differential problems (see,
e.g., [4-7]). In the Section 2, we state some important
properties of the exact solution. The derivations of the
difference scheme and uniform convergence analysis
have been given in Section 3. Uniform convergence is
proved in the discrete maximum norm. The approach to
the construction of the discrete problem and the error
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analysis for the approximate solution are similar to those |u )|
in [8,9].
Difference schemes for singularly perturbed systems p(||b1|| o )||b1|| |Al+[b], @ exp(||bl|| )|B|
with another type of initial/boundary conditions were 1
vestigated n [3.69-11] e I (YRR YRS I )

Throughout the paper, C will denote a generic positive
constant independent of & and of the mesh parameter.

v (I, e, o) +1)] flnw]

2. Analytical Results

(10)
Lemma 2.1. Under the Using the function F,(x)=c,(x)u(x)+f,(x), to
p=(aa,) "01" Il . eXp(%”bl" ) prove (10) after some manipulations we have
the solution of the problem (1)-(4) satisfies "V"°° : |A2|a£l oy "C2”°° "u”°° oy " f2”°° +|BZ|' (h
bl <c. O pifs e[ rat e bl e )
|u'(x)|gc(1+§exp(%lxjj, ® el lull +10) e (e )4 )
Hence
M. <c. Dl <0 p) (oo, ')Al
|v’(x)|sc(1+%exp(_a;x)j. 8 +ay EXD(”bl"w )|B|
Here ||9|| —m |9 | for any continuous functions alaz ||C1"w|A2|exp(||b1"wal)

+(aa,) e, e (b, o)l

9(x). vexp([b, o *)[B+ay texp (], o). )

Proof. First we prove that for the solution of ini-

tial-value problem of the type and
R (%) = e (x)v(x)+ f,(x) M, <@ p) " (|A]ast + a5t [ ], |Alexp (b, &)

the following estimates hold +a," eXP(||b1|| a{l)"Cz || |B |

Jull, <exp(lbil, os*)(|Al+as" By o ) el el e, <], -5,

o'V, e, + e[ ). Then from (9)-(12) the following estimates hold
(0] exp(l s, A+ . o [Bexo(Bl. o)+ e 2 2 e
o (b, exp(le], )+ 1)l (2= p) " (1A ent + ot eal, [Alexp(bi, o)+ 2 e . B
xexp(|bi], o)+ (@)oo, ex|0(||b1|| o |6, +er [, +[Bo[) + (Il exp (o], er®) + 1) £, .

(o) < o ) (] ool oc*)+3) . 1= ) esp(]. )

+agtexp(|n, o )[B+ (@) e, [Alexp (b, o) +(ane:) [, 6], exp (b, o)
vexp(|bl, ort)eu [ci], [B: e exp(lon], e |, )+ fo ], + ' ca], [Bifexe(fou], es?)
+(na) oo, exp(Bll, o Il +1EI, + a2 o], (" |A] +[B. )
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The last inequalities show the validity of (5)-(8).

3. The Difference Scheme and Convergence

Now we construct the difference scheme and investigate
it. In what follow, we denote by @ the uniform mesh in
[0,1]:

@, ={x =ih,i=12,---,N-Lh=1/N}

And @=wU{x=0,1}. Before describing our nu-

merical method, we introduce some notation for the mesh
functions. For any mesh function g(x), we use

g = g(xi)!
0i —0ia a9

Ox,i T Oy T
_9ia—0in 0 —20,+0;

gi,i 2h ' ng,i - h2

lol. =lll. . =max|g.

On @ we propose the following difference scheme
for approximating (1)-(4):

LU, =¢oU,,, +alUu, +blU,
‘ ‘ X! (13)
=cV, +f!, =12 N-1,
L2V, = 0N, +alV, +bV,
_ . X! (14)
=ciU, +f), =12 N-1,
U,=A,
h - h
L&p=@+%(®; @j @ﬂ&—m(mgaﬁ (15)
h
+;4?gmﬂ,
h
A, | 1-exp| -a,(0)—
V= V. =B 16
x,0 az (O)h N 2 ( )
where

oﬂ)zéladxdcmhm(m)ll,(k:LZ)
&

: 2¢
Note that
w_ah @ _
i = 28( ki Oy )+l’
where
& h .
ol = k(XI)h—[exp[ak(xi);j—lJ ,

Open Access

-1
@ _[1_expl —a (x 1] ——f (k=
Iops (1 exp[ ak(x,)SD A (Oh (k=12).
Throughout the paper, we assume that
p= 4a2’17/||c1||00 "02”00 <l y= 40(1’1 exp(al’lbl*).

For solving of the (13)-(16), we giving the following
iterative procedure:

Lu™ =cv 4 £ 17)
L2v™ =ciu™ + . (18)
Ug” = A,
ah )" h
Uiy = (1+? %)j [5131 1 Aiszl(g) (19)
h
+Eq§nmﬂ

A, (1-exp(-a, (0)h/e))

cvin =B (20
aZ(O)h N 2 ( )

Vx,O =

where V.9 is arbitrary.

Lemma 2.2. The iteration (18)-(21) is suitable for the
solution of the problem (13)-(16) and the solution of the
difference problem (13)-(16) satisfies

oo <285 N vel e
o 1-[0 0
n-1

(m _ P @ _y

v ngl—p’v vl (22)
Proof. Denoting
é‘i(”) :Ui(”) _Ui(fil)! Hi(n) :Vi(n) _Vi(_”lfl)
we will have

|_1hé‘i(n):clilgi(n—l)l n=2,--N (23)
16" =i, (24)
s =6t =0, (25)
8" =0, 60" =0 (26)

From (23)-(26) and R =c/6"™, it is not difficult to
get

‘5(”)

< 7h_Zj1LIRi| = 7thlJ|C{H9i(“'”‘,
and thereby

“5(”) oY

o

<7lel, =p

oo

In similar manner, from (24), (26) and F, = cizc'ii(") we
also obtain
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oM™ n)

<4aytey]., 5!

(n)

L P
Hence,

o 10

, 5(")

oL oL seale],

o

The limit case for n—>w leads to 6™, 6™ —0.
Hence the sequences {U,},{V;} are Cauchy sequences
and convergent:

limu®™ =u,, limv"” =V..

n—oo n—o

The limit functions U,,V; will be solution of scheme
(13)-(16).
Now we prove (21) and (22). We have

U (n+m) ~-U (n)

L9

S‘U(ner) _U(n+m—l) +“_+‘U(n+l) _U(n)
< P (pn+m—l + pn+m—2 +pn—l) ® _V(O) i
=pp (P P e+ )V v O )

0

_ o al=p" w0
=pp -, "V \
P

"~ Ve -y
1-p

The limit case for m — oo leads to (21). The inequal-
ity (22) is being proved analogously.

Lemma 2.3. The solution of the difference problem
(13)-(16) satisfies

0

Ux,O

ol = (2= )" {0, o 40l

Nt (27)
[t 5] |j+h§|fl'|+|82|},
4, = 4050 p) oot Vool 71,
(28)
o[ eo®u,o| +h3|E]]+n3 |8
€0, Yxoll, T Zl| 1| +h;|f2|+|82| '

Proof. After setting R, = f,' +clV, and
F =f, +cU; we will get
N-1 i
el ML+ ],

x,0

V|, < y(go—: U

VL 4e5' 1) ol
N-1, N-1, .
x(go—il)u +h2|f1'|j+h2|fz'|+|82|}.
i=1 i=1
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7).l

X,0{|0

The using each of these into another immediatelleads
to (27) and (28).
Lemma 2.4. For the truncation errors
R = f, (%)= Lu(x)+c (x)v(x),
R, =1, (Xi )_ LgV(Xi)+Cz (Xi )U(Xi)’

h ) h
o = (1+ a (O)ZUfg)j (S 'B,-0,(0)A 0l

+ﬂo—f§>f(0)j—u
&

o _ A, (1-exp(-a, (O)h/g)) v
0 a,(0)h X0
= AZ h _Vx,O’
5(1+ a, (0)80%))

the following estimates hold

|R1'| <Ch [1+ h’lT |u’(x)| dx + h’lXT |v'(x)| dx], (29)

|R£| < Ch(1+ h1X]t1(|v'(x)|+|V'(X)|)]dx’ (30)

5(1 o-10 h/g)1 a
x[1+hj|u |dx+”v’(x)|dxj,
GRE T2 (0100
(1 Xl2 (O)O'zo h/ il) 32)
x[1+ j|v’(x)|dx+;[|u’(x)|dx}
Proof. We may write
R =h™ _[ —a,(x))u'(x) g (x)dx
+h? j —b(%)u(x%)) @y (x)dx
(33)
+h? j X)) @, (X)dx
T (9(5)) o (X)n
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x{xf(az(x)—az(O))v’(x)go((,?(x)dx

Xo

_Ib (002 dX ff %2)( )dX

Xo

_Icz (/’02)( )d }’

(36)
where

Bk (x=%i1)/e -1

@ (x)= T Xia

1— e_aik (Xia-x)/¢

<X<X,

i X <X <X,

— 1@ (x) =
P =10 (X)=
Y 1-e

0 KE (X2 %0).

The relations (33)-(36) leads immediately to (29)-(32).
Theorem 2.3. Let

a, (x),b (x),c (x), f, (x)eC[0,1]. Then the solution
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of the difference problem (13)-(16) converges uniformly
in & to the solution of (1)-(4) with rate
Proof. Let
z; =U; —u(X), z; =V, =v(X).
Then for the errors of the approximate solution
2, (k=12;i=0,N) we have

L'z, = ¢z, +R}, (i =LN _1)'
L5z, =3z, + Ry,
0 =0, Zixo = r(l)'

_ @ _
Zyxo =T s Iy =0,

where R',R),r" r® are approximating errors from
Lemma 2.4. Using Lemma 2.3 we obtain

|2l |zl

< C{go{l) ‘r( )‘+50'

‘+h2|f |+hz|f |}

By virtue that of (29)-(32) all terms in right-hand side
of this inequality have the rate O(h) and hence the
proof follows immediately
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