Inheritance of fire blight resistance in Asian Pyrus species


Since several Asian pear species are considered to be potential source of fire blight resistance, we crossed “Doyenné du Comice”, the susceptible European cultivar, with four Asian pear species. The aim of the study was to establish the level of resistance of each genotype and the mode of transmission of fire blight resistance to each F1 full-sib progeny. The best sources of resistance were P. ussuriensis 18 and P. ussuriensis var. ovoidea 8 ranked to resistant and highly resistant, respectively. Although pear resistance to fire blight is suggested to be polygenic, distribution of phenotypes in “Doyenné du Comice” × P. ussuriensis var. ovoidea 8 hybrid family suggests the possibility of monogenic inheritance with the dominance of resistance derived from P. ussuriensis var. ovoidea 8. Polygenic inheritance of pear resistance to fire blight was identified in cross combinations of “Doyenné du Comice” with P. pyrifolia 6, and contributed by the major gene, with P. ussuriensis 18 and P. calleryana 12. Transgressive segregation was observed within the progenies of susceptible, moderately susceptible and resistant parents.

Share and Cite:

Bokszczanin, K. , Przybyla, A. , Schollenberger, M. , Gozdowski, D. , Madry, W. and Odziemkowski, S. (2012) Inheritance of fire blight resistance in Asian Pyrus species. Open Journal of Genetics, 2, 109-120. doi: 10.4236/ojgen.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Denning, W. (1794) On the decay of apple trees. Transactions of the Society for the Promotion of Agriculture, Arts and Manufacturers, 1, 219-222.
[2] Burrill, T.J. (1871) Report on vegetable physiology. Transactions of the Illinois State Horticultural Society, 5, 197- 199.
[3] Arthur, J.C. (1885) Proof that the disease of trees known as Pear-Blight is directly due to bacteria. NY (Geneva) State Experimental Station Bulletin, 2, 1-4.
[4] Hartman, H. (1957) Catalog and evaluation of the pear collection at Oregon Agriculture Experiment Station. Oregon Agricultural Experimental Station Technical Bulletin, 41.
[5] Bell, A.C., Ranney, T.G., Eaker, T.A. and Sutton, T.B. (2005) Resistance to fire blight among flowering pears and quince. HortScience, 40, 413-415.
[6] Oitto, W.A., Van der Zwet, T. and Brooks, H.J. (1970) Rating of pear cultivars for resistance to fire blight. HortScience, 5, 474-476.
[7] Van der Zwet, T. and Oitto, W.A. (1972) Further evaluation of the reaction of “resistant” pear cultivars to fire blight. HortScience, 7, 395-397.
[8] Thibault, B., Lecomte, P., Hermann, L. and Belouin, A. (1987) Assessment of the susceptibility to Erwinia amylovora of 90 varieties or selections of pear. Acta Horticulturae, 217, 305-309.
[9] Le Lézec, M., Lecomte, P., Laurens, F. and Michelesi, J.C. (1997) Sensibilité variétale au feu bactérien [3 parts]. Arboriculture Fruitière, 503, 57-61; 504, 33-37; 505, 31- 40.
[10] Vanneste, J.L. (2000) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI Publishing, New York. doi:10.1079/9780851992945.0000
[11] Postman, J.D. (2008) The USDA quince and pear gene-bank in Oregon, a world source of fire blight resistance. Acta Horticulturae, 793, 357-362.
[12] Hedrick, U.P. (1921) The pears of New York. Twenty-Ninth Annual Report of State of New York, Part II, Department of Agriculture, 2, JB Lyon Co, Albany.
[13] Patten, C.G. (1917) Origin and development of hardy, blight-resistant pears. The Minnesota Horticulturist, 45, 97-102.
[14] Janick, J. and Moore, J.N. (1996) Fruit breeding. Tree and tropical fruits. John Wiley & Sons, New York.
[15] Van der Zwet, T. and Keil, H.L. (1979) Fire blight: A bacterial disease of rosaceous plants. Handbook, 510, United States Department of Agriculture.
[16] Yamamoto, T., Kimura, T., Shoda, M., Imai, T., Saito, T., Sawamura, Y., Kotobuki K., Hayashi T. and Matsuta, N. (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theoretical Applied Genetics, 106, 1-18.
[17] Yamamoto, T., Kimura, T., Saito, T., Kotobuki, K., Matsuta, N., Liebhard, R., Gessler, C., van de Weg, W.E. and Hayashi, T. (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Horticulturae, 663, 51-56.
[18] Pierantoni, L., Cho, K.-H., Shin, I.-S., Chiodini, R., Tartarini, S., Dondini, L., Kang, S.J. and Sansavini, S. (2004) Characterization and transferability of apple SSRs to two European pear F1 populations. Theoretical Applied Genetics, 109, 1519-1524. doi:10.1007/s00122-004-1775-9
[19] Dondini, L., Pierantoni, L., Gaiotti, F., Chiodini, R., Tartarini, S., Bazzi, C. and Sansavini, S. (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Molecular Breeding, 14, 407-418. doi:10.1007/s11032-004-0505-y
[20] Bokszczanin, K., Dondini, L. and Przybyla, A.A. (2009) First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis maxim. Journal of Applied Genetics, 99-104. doi:10.1007/BF03195660
[21] Bell, A.C., Ranney, T.G. and Eaker, T.A. (2004) Resistance to fire blight among flowering pears and quince. HortScience, 40, 413-415.
[22] Gardner, R.G., Cummins, J.N. and Aldwinckle H.S. (1980) Inheritance of fire blight resistance in Malus in relation to rootstock breeding. Journal of the American Society for Horticultural Science, 105, 912-916.
[23] Layne, R.E.C., Bailey, C.H. and Hough, L.F. (1968) Efficacy of transmission of fire blight resistance in Pyrus. Canadian Journal of Plant Science, 48, 231-243. doi:10.4141/cjps68-044
[24] Allard R.W. (1960) Principles of plant breeding. John Wiley and Sons, New York.
[25] Janick, J. and Moore, J.N. (1975) Advances in fruit breeding. Purdue University Press, West Lafayette.
[26] Thompson, S.S., Janick, J. and Williams, E.B. (1962) Evaluation of resistance to fire blight of pear. Proceedings of American Society of Horticultural Sciences, 80, 105-113.
[27] Westwood, M.N. and Bjornstad, H.O. (1971) Some fruit characteristics of interspecific hybrids and extent of self-fertility in Pyrus. Bulletin of the Torrey Botanical Club, 98, 22-24. doi:10.2307/2483493
[28] Reimer, F.C. (1925) Blight resistance in pears and characteristics of pear species and stocks. Oregon Agricultural Experimental Station Bulletin, 214, 99.
[29] Lespinasse. Y. and Aldwinckle, H.S. (2000) Breeding for resistance to fire blight. In: Vanneste J.L., Ed., Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora. CABI Publishing, Wallingford, 253-273. doi:10.1079/9780851992945.0253
[30] Van der Zwet, T., Oitto, W.A. and Westwood, M.N. (1974) Variability in degree of fire blight resistance within and between Pyrus species, interspecific hybrids, and seedling progenies. Euphytica, 23, 295-304. doi:10.1007/BF00035871
[31] Anderson, H.W. (1928) Seek pear resistant to destructive fire blight. Agricultural Experimental Station and Annual Report III, 41, 263-264.
[32] Cameron, H.R., Westwood, M.N. and Lombard, P.B. (1968) Resistance of Pyrus species and cultivars to Erwinia amylovora. Phytopathology, 59, 1813-1815.
[33] Lamb, R.C. (1960) Resistance to fire blight of pear varieties. Proceedings of the American Society for Horticultural Science, 75, 85-88.
[34] Mowry, J.B. (1964) Maximum orchard susceptibility of pear and apple varieties to fireblight. Plant Disease Report, 48, 272-276.
[35] Lotsy, J.P. (1916) Evolution by means of hybridization. M. Nijhoff, The Hague.
[36] Darlington, C.D. and Mather, K. (1949) The elements of genetics. Allen & Unwin, London.
[37] Rick, C.M. and Smith, P.G. (1953) Novel variation in tomato species hybrids. The American Naturalist, 88, 359- 373. doi:10.1086/281796
[38] Brainerd, E. (1924) Some natural violet hybrids of North American Vermont Agricultural Experimental Station Bulletin, No. 239.
[39] Vega, U. and Frey, K.J. (1980) Transgressive segregation in inter and intraspecific crosses of barley. Euphytica, 29, 585-594. doi:10.1007/BF00023206
[40] Quarrie, S.A. and Mahmood, A. (1993) Improving salt tolerance in hexaploid wheat. Annual Report AFRC Institute of Plant Science Research, 4, 2.
[41] Luzzi, B.M., Boerma, H.R. and Hussey, R.S. (1994) Inheritance of resistance to the southern root-knot nematode in soybean. Crop Science, 34, 1240-1243. doi:10.2135/cropsci1994.0011183X003400050018x
[42] Hou, L.M., Ullrich, S.E. and Kleinhofs, A. (1994) Inheritance of anther culture traits in barley. Crop Science, 34, 1243-1247. doi:10.2135/cropsci1994.0011183X003400050019x
[43] Singh, S.P., Khanna, K.R., Shukla, S., Dixit, B.S. and Banerji, R. (1995) Prospects of breeding opium (Papaver somniferum L.) as a highlinoleic-acid crop. Plant Breeding, 114, 89-91. doi:10.1111/j.1439-0523.1995.tb00768.x
[44] Bordelon, B.P. (1981) Transgressive segregation for resistance in barley to net blotch. M.S. Thesis, Montana State University, Bozeman, 86.
[45] Cherif, M. and Harrabi, M. (1993) Transgressive segregation for resistance to Pyrenophora teres in barley. Plant Pathology, 42, 617-621. doi:10.1111/j.1365-3059.1993.tb01542.x
[46] Brooks, S.J., Moore, J.N. and Murphy J.B. (1993) Quantitative and qualitative changes in sugar content of peach genotypes Prunus persica (L.) Batsch. Journal of the American Society for Horticultural Science, 118, 97-100.
[47] Oard, J.H. and Hu, J. (1995) Inheritance and characterization of pollen fertility in photoperiodically sensitive rice mutants. Euphytica, 82, 17-23. doi:10.1007/BF00028705
[48] Zhang, G., Sebolt, A.M., Sooriyapathirana, S.S., Wang, D., Bink, M., Olmstead, J.W. and Iezzoni, A.F. (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genetics and Genomes, 6, 25-36. doi:10.1007/s11295-009-0225-x
[49] Hampson, C.R. and Sholberg, P.L. (2008) Estimating combining ability for fire blight resistance in apple progenies. Acta Horticulturae, 793, 337-343.
[50] Durel, C.-E., Denancé, C. and Brisset, M.-N. (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes “Evereste” and Malus floribunda clone 821. Genome, 52, 139-147.
[51] Engels, W.R. (1983) The P family of transposable elements in Drosophila. Annual Review Genetics, 17, 315-344. doi:10.1146/
[52] Frey, K., Cox, T.S., Rodgers, D.M. and Ramel-Cox, P. (1981) Increasing cereal yields with genes from wild and weedy species. Proceedings of the 15th International Genetics Congress, New Delhi, 12-21 December, 51-68.
[53] Moore, J.H. (2005) A global view of epistasis. Nature Genetics, 37, 13-14. doi:10.1038/ng0105-13
[54] Grant, V. (1975) Genetics of flowering plants. Columbia University Press, New York.
[55] Voigt, P.W. and Tischler, C.R. (1994) Leaf characteristic variation in hybrid lovegrass populations. Crop Science, 34, 679-684. doi:10.2135/cropsci1994.0011183X003400030015x
[56] Jr. Stebbins, G.L. (1950) Variation and evolution in plants. Columbia University Press, New York.
[57] Lewontin, R.C. and Birch, L.C. (1966) Hybridization as a source of variation for adaptation to new environments. Evolution, 20, 315-336. doi:10.2307/2406633
[58] Olby, R.C. (2000) Horticulture: The font for the baptism of genetics. Nature Reviews Genetics, 1, 65-70. doi:10.1038/35049583
[59] Bell, R.L., Quamme, H.A., Layne, R.E.C. and Skirvin, R.M. (1996) Pears. In: Janick J. and Moore J.N., Eds., Fruit Breeding: Tree and Tropical Fruits. Wiley and Sons, New York, 441-514.
[60] Lange, K. (1997) An approximate model of polygenic inheritance. Genetics, 147, 1423-1430.
[61] Corva, P.M. and Medrano, J.F. (2001) Quantitative trait loci (QTLs) mapping for growth traits in the mouse: A review. Genetics Selection Evolution, 33, 105-132. doi:10.1186/1297-9686-33-2-105
[62] Acquaah, G. (2007) Principles of plant genetics and breeding. Wiley-Blackwell, Hoboken.
[63] Bokszczanin, K. (2009) Identyfikacja loci cech ilo?ciowych warunkuj?cych odporno?? gruszy na zaraz? ogniow? (Erwinia amylovora). (Identification of quantitative trait loci for fire blight (Erwinia amylovora) resistance in pear). Ph.D. Thesis, Warsaw University of Life Science, Warsaw.
[64] Van der Plank, J.E. (1982) Host-pathogen interactions in plant disease. Academic Press, New York.
[65] Zhu, M., Yu, M. and Zhao, S. (2009) Understanding quantitative genetics in the systems biology era. International Journal of Biological Sciences, 5, 161-170. doi:10.7150/ijbs.5.161
[66] Liu, B.-H. (1998) Statistical genomics: Linkage, mapping, and QTL analysis. CRC Press, Boca Raton.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.