
A. Y. Varaksin et al. / Natural Science 3 (2011) 907-913
Copyright © 2011 SciRes. OPEN ACCESS
913913
the heating rates of underlying surface and air temporal
and spatial temperature shear which lead to the stable
generation of wall-free vortices. Video filming, as well
as the use of tracer (magnesia or vapour) particles were
used to visualize and to investigate qualitatively the dy-
namics and some integral parameters of vortices which
arise over heated underlying surface as a result of unsta-
ble air stratification.
In our opinion, further progress in studying the prob-
lems associated with generation, stability, and dissipa-
tion of vortex structures with a view to explaining a
number of natural phenomena (tornadoes, typhoons,
storms) will be based on the concept of two-phase nature
25,26 (the presence of droplets and solid particles) of
the atmospheric processes referred to above.
7. ACKNOWLEDGEMENTS
This study was supported in part by the programs for basic research
of the Division of Energetics, Machinery, Mechanics, and Control
Systems of the Russian Academy of Sciences on “The Investigation of
Fundamental Problems in Combustion and Detonation in Power Engi-
neering” and “Physicochemical Mechanics of Nonequilibrium Sys-
tems” and by the Russian Foundation for Basic Research (grant no.
11-08-00591).
REFERENCES
[1] Holzer, A.M. (2001) Tornado climatology of Austria.
Atmospheric Research, 56, 203-211.
doi:10.1016/S0169-8095(00)00073-9
[2] Meaden, J.T. (1976) Tornadoes in Britain: Their intensi-
ties and distribution in space and time. Journal of Mete-
orology, 1, 242-251.
[3] Dotzek, N. (2001) Tornadoes in Germany. Atmospheric
Research, 56, 233-251.
doi:10.1016/S0169-8095(00)00073-9
[4] Gianfreda, F., Miglietta, M.M. and Sanso, P. (2005) Tor-
nadoes in Southern Apulia (Italy). Natural Hazards, 34,
71-89. doi:10.1007/s11069-004-1966-3
[5] Marcinoniene, I. (2003) Tornadoes in Lithuania in the
period of 1950-2002 including analysis of the strongest
tornado of 29 May 1981. Atmospheric Research, 67, 475-
484. doi:10.1016/S0169-8095(03)00060-7
[6] Niino, H., Fujitani, T. and Watanabe, N. (1997) A statis-
tical study of tornadoes and waterspouts in Japan from
1961 to 1993. Journal of Climate, 10, 1730-1752.
doi:10.1175/1520-0442(1997)010<1730:ASSOTA>2.0.C
O;2
[7] Ashley, W.S. (2007) Spatial and temporal analysis of
tornado fatalities in the United States: 1880-2005. Wea-
ther and Forecasting, 22, 1214-1228.
doi:10.1175/2007WAF2007004.1
[8] Simmons, K.M. and Sutter, D. (2007) Tornado shelters
and the manufactured home parks market. Natural Haz-
ards, 43, 365-378. doi:10.1007/s11069-007-9123-4
[9] Ward, N.B. (1972) The exploration of certain features of
tornado dynamics using laboratory model. Journal of the
Atmospheric Sciences, 29, 1194-1204.
doi:10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.C
O;2
[10] Akhmetov, D.G. and Nikulin, V.V. (2008) Experimental
determination of the time of tornado-like vortex forma-
tion in a closed chamber. Technical Physics Letters, 34,
1057-1059. doi:10.1134/S1063785008120201
[11] Van Bokhoven, L.J.A., Clercx, H.J.H., Van Heijst, G.J.F.
and Trieling, R.R. (2009) Experiments on rapidly rotat-
ing turbulent flows. Physics of Fluids, 21, 096601-1-
096601-20. doi:10.1063/1.3197876
[12] Morize, C., Moisy, F. and Rabaud, M. (2005) Decaying
grid-generated turbulence in a rotating tank. Physics of
Fluids, 17, 095105-1-095105-11. doi:10.1063/1.2046710
[13] Hopfinger, E.J., Browand, F.K. and Gagne, Y. (1982)
Turbulence and waves in a rotating tank. Journal of Fluid
Mechanics, 125, 505-534.
doi:10.1017/S0022112082003462
[14] Mununga, L., Hourigan, K., Thompson, M.C. and Le-
weke, T. (2004) Confined flow vortex breakdown control
using a small rotating disk. Physics of Fluids, 16, 4750-
4753. doi:10.1063/1.1813061
[15] Tan, B.T., Liow, K.Y.S., Mununga, L., Thompson, M.C.
and Hourigan, K. (2009) Simulation of the control of
vortex breakdown in a closed cylinder using a small ro-
tating disk. Physics of Fluids, 21, 024104-1-024104-8.
doi:10.1063/1.3073747
[16] Yu, P. and Meguid, S.A. (2009) Effects of wavy sidewall
on vortex breakdown in an enclosed cylindrical chamber
with a rotating end wall. Physics of Fluids, 21, 017104-1-
017104-11. doi:10.1063/1.3072090
[17] Bhattacharyya, S. and Pal, A. (1998) Axisymmetric vor-
tex breakdown in a filled cylinder. International Journal
of Engineering Science, 36, 555-563.
doi:10.1016/S0020-7225(97)00102-X
[18] Valentine, D.T. and Jahnke, C.C. (1994) Flows induced
in a cylinder with both end walls rotating. Physics of
Fluids, 6, 2702-2710. doi:10.1063/1.868159
[19] Roesner, K.G. (1990) Recirculating zones in a cylinder
with rotating lid. Proceedings of International Union of
Theoretical and Applied Mechanics Symposium, Cam-
bridge, 13-18 August 1990.
[20] Husain, H.S., Shtern, V. and Hussain, F. (2003) Control
of vortex breakdown by addition of near-axis swirl.
Physics of Fluids, 15, 271-279. doi:10.1063/1.1530161
[21] Shtern, V. and Hussain, F. (1993) Hysteresis in a swirling
jet as a model tornado. Physics of Fluids, 5, 2183-2195.
doi:10.1063/1.858888
[22] Shtern, V., Borissov, A. and Hussain, F. (1997) Vortex-
sinks with axial flows: Solution and applications. Physics
of Fluids, 9, 2941-2959. doi:10.1063/1.869406
[23] Shtern, V., Hussain, F. and Herrada, M. (2000) New fea-
tures of swirling jets. Physics of Fluids, 12, 2868-2877.
doi:10.1063/1.1313547
[24] Yih, C.-S. (2007) Tornado-like flows. Physics of Fluids,
19, 076601-1-076601-6.
[25] Varaksin, A.Y. (2007) Turbulent particle-laden gas flows.
Springer, Berlin. doi:10.1007/978-3-540-68054-3
[26] Sidin, R.S.R., IJzermans, R.H.A. and Reeks, M.W. (2009)
A lagrangian approach to droplet condensation in at-
mospheric clouds. Physics of Fluids, 21, 106603-1-
106603-16. doi:10.1063/1.3244646