
M. S. OZCAN ET AL.
148
Our study had several strengths that support the evidence in
favor of the null hypothesis. The main strength was the relative
uniformity of the surgical stimulus and depth of anesthesia at
the time of word presentation. For all subjects, presentation of
the words started within 2 - 3 minutes of bone instrumentation.
Depth of anesthesia for each subject was achieved before the
word presentation was started and maintained for the duration
of priming. To our knowledge, no other study maintained depth
of anesthesia in as tight a target interval.
One weakness of the study was that the timing of the mem-
ory test was performed on the day of surgery for some subjects
but on the next day in others. Ideally, all WSC test should have
been conducted after the same time interval because Dobrunz,
Jaeger, and Vetter (2007) found a difference in WSC related to
timing of the test. It is also possible that the level of the surgical
stimulus might not have been strong enough to facilitate im-
plicit learning. It has been proposed that surgical stimulus en-
ables learning during anesthesia. Although there is no direct
evidence from human studies, epinephrine has been shown to
enable fear conditioning in rats (Gold, Weinberger, & Sternberg,
1985). The majority of studies that have found implicit memory
under anesthesia had ongoing surgical stimulus during the
priming phase. Conversely, studies on healthy volunteers under
anesthesia in the absence of a surgical stimulus were unable to
detect implicit memory. Therefore, it is possible that the level
of anesthesia in our study, even in the BIS 55 - 60 group, might
have been sufficient to prevent implicit learning given the sur-
gical procedures our subjects were exposed to. We also pre-
medicated our subjects with midazolam, which has been
avoided in most other studies. Benzodiazepines are known to
have anterograde amnestic properties on the formation of ex-
plicit memories, but their effect on implicit memory is not es-
tablished. Lastly, our methods might be not sensitive enough to
detect implicit memory in this setting. Intraoperative word
priming followed by a postoperative WSC test as a method of
detecting implicit memory under anesthesia is still evolving.
Many factors such as timing of the WSC test, choice of target
and distractor words, and whether PDP is utilized to remove
possible contamination by explicit memories, are still being
debated. No method has been established as a standard for test-
ing implicit memory in the perianesthetic state.
In summary, we were unable to demonstrate implicit mem-
ory in two groups of patients under different anesthetic depths
(BIS 40 - 45 and BIS 55 - 60) during bone instrumentation.
According to our results, maintaining the BIS below 60 is an
adequate strategy to prevent the formation of implicit as well as
explicit memories. This conclusion is 9.73 times more likely to
be true than the alternative hypothesis that implicit memories
can be formed under anesthesia.
Acknowledgements
We gratefully acknowledge the support of the Vice President
for Research from the University of Oklahoma for this project.
We would like to thank Jeffrey N. Rouder and Michael S.
Pratte for their assistance with the statistical analysis.
References
Andrade, J., & Deeprose, C. (2007). Unconscious memory formation
during anesthesia. Best Practices and Research Cliicaln Anesthesi-
ology, 21, 385-401. doi:10.1016/j.bpa.2007.04.006
Bowdle, T. A. (2006). Depth of anesthesia monitoring. Anesthesiology
Clinics of North America, 24, 793-822.
doi:10.1016/j.atc.2006.08.006
Deeprose, C., Andrade, J., Varma, S., & Edwards, N. (2004). Uncon-
scious learning during surgery with propofol anesthesia. British
Journal of Anesthesia, 92, 171-177. doi:10.1093/bja/aeh054
Dobrunz, U. E., Jaeger, K., & Vetter, G. (2007). Memory priming dur-
ing light anesthesia with desflurane and remifentanil anesthesia.
British Journal of Anesthesia, 98, 491-496. doi:10.1093/bja/aem008
Gold, P. E., Weinberger, N. M., & Sternberg, D. B. (1985). Epineph-
rine-induced learning under anesthesia: Retention performance at
several training-testing intervals. Behavioral Neuroscience, 99,
1019-1022. doi:10.1093/bja/aem008
Hadzidiakos, D. A ., Horn, N., Deg ener, R. , Buch ner, A ., & R ehb erg, B.
(2009). Analysis of memory formation under general anesthesia
(propofol/remifentanil) for elective surgery using the proc-
ess-dissociation procedur e . Anesthesiology, 111, 293-301.
doi:10.1097/ALN.0b013e3181ac4a4b
Iselin-Chaves, I. A., Wil lems, S. J., Jermann, F. C., Forster, A., Ad am,
S. R., & Van der Linden, M. (2005). Investigation of implicit mem-
ory during isoflurane anesthesia for elective surgery using the proc-
ess dissociation procedure. Anesthesiology, 103, 925-933.
doi:10.1097/00000542-200511000-00005
Jacoby, L. L. (1991). A process dissociation framework: Separating
automatic from intentional uses of memory. Journal of Memory and
Language, 30, 513-541. doi:10.1016/0749-596X(91)90025-F
John, C. H. (1988). Emotionality ratings and free association norms of
240 emotional and non-emotional words. Cognition and Emotion, 2,
49-70. doi:10.1080/02699938808415229
Kerssens, C., Ouchi, T., & Sebel, P. S. (2005). No evidence of memory
function during anesthesia with propofol or isoflurane with close
control of hypnotic state. Anesthesiology, 102, 57-62.
doi:10.1097/00000542-200501000-00012
Lequeux, P. Y., Cantraine, F., Levarlet, M., & Barvais, L. (2003). Ab-
sence of explicit and implicit memory in unconscious patients using
a TCI of propofol. Acta Anaesthesiologica Scandinavica, 47,
833-837. doi:10.1034/j.1399-6576.2003.00159.x
Lequeux, P. Y., Velg he-Len elle, C. E., Ca ntraine, F., S osn owsk i, M., &
Barvais, L. (2005). Absence of implicit and explicit memory during
propofol/remifentanil anesthesia. European Journal of Anaesthesi-
ology, 22, 333-336. doi:10.1017/S0265021505000566
Lubke, G. H., Kerssens, C., Phaf, H., & Sebel, P. S. (1999). Depend-
ence of explicit and implicit memory on hypnotic state in trauma pa-
tients. Anesthesiology, 90, 670-680.
doi:10.1097/00000542-199903000-00007
Munte, S., Munte, T. F., Mitzlaff, B., Walz, R., Leuwer , M., & Piepen-
brock, S. (2001). Postoperative reading speed does not indicate im-
plicit memory in elderly cardiac patients after propofol and remifen-
tanyl anesthesia. Acta Anaesthesiologica Scandinavica, 45, 750-755.
doi:10.1034/j.1399-6576.2001.045006750.x
Phelps, E. A. (2004). Human emotion and memory: Interactions of the
amygdala and hippocampal complex. Current Opinion in Neurobi-
ology, 14, 198-202. doi:10.1016/j.conb.2004.03.015
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.
(2009). Bayesian t-tests for accepting and rejecting the null hypothe-
sis. Psychonomic Bulletin and Revie w, 16, 225-237.
doi:10.3758/PBR.16.2.225
Russell, I. F., & Wang, M. (1997). Absence of memory for intraopera-
tive information during surgery under adequate general anesthesia.
British Journal of Anesthesia, 78, 3-9.
Russell, I. F., & Wang, M. (2001). Absence of memory for in-
tra-operative information during surgery with total intravenous anes-
thesia. British Jo urnal of Anesthesia, 86, 196-202.
doi:10.1093/bja/86.2.196
Sandin, R. (2006). Outcome after awareness with explicit recall. Acta
Anaesthesiologica Belgic a, 57, 429-432.
Schacter, D. L. (1987). Implicit memory: History and current status.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 13, 501-518. doi:10.1037/0278-7393.13.3.501
Stoelting, R. K. (1999). APSF survey results identify safety issue pri-
orities. APSF Newsletter 1999, 14, 2.