G. PANOTOPOULOS
Copyright © 2011 SciRes. JMP
378
fermion. All the couplings in the model are given in
terms of the electric charge. It is interesting that there is a
quartic self-interaction coupling for the scalar fields even
in the absence of a coupling
. Within the one-loop
renormalization program we give the expression for the
wave-function renormalization, and according to the
standard prescription we compute the critical exponents
,
from the beta function and the anomalous dimen-
sions. Finally, we have discussed spontaneous supersym-
metry breaking a la Fayet-Iliopoulos mechanism. There
is a case in which both supersymmetry and gauge sym-
metry can be broken at the same time. The photon ac-
quires a non-vanishing mass, and the Landau-Ginzburg
parameter is computed. We find that its value corre-
sponds to type II superconductors. Our values of the
Ginzburg parameter and of the critical exponents are
similar to the ones obtained in [4], without many fer-
mions and without the introduction of a second coupling
constant for the scalar quartic self-interaction.
5. Acknowledgments
The author acknowledges financial support from FPA
2008-02878 and Generalitat Valenciana under the grant
PROMETEO/2008/004.
6. References
[1] V. L. Ginzburg and L. D. Landau, “On the Theory of
Superconductivity,” Zhurnal Eksperimental’noi i Teo-
reticheskoi Fiziki, Vol. 20, 1950, pp. 1064-1082.
[2] B. I. Halperin, T. C. Lubensky and S. K. Ma, “First-
Order Phase Transitions in Superconductors and
Smectic-A Liquid Crystals,” Physical Review Letters,
Vol. 32, 1974, pp. 292-295. J. H. Chen, T. C. Lubensky
and D. R. Nelson, “Crossover near Fluctuation-Induced
First-Order Phase Transitions in Superconductors,”
Physical Review B, Vol. 17, No. 11, 1978, pp. 4274-4286.
doi:10.1103/PhysRevB.17.4274
[3] I. D. Lawrie, “On the Phase Transitions in Abelian Higgs
Models,” Nuclear Physics B, Vol. 200, No. 1, 1982, pp.
1-19. doi:10.1016/0550-3213(82)90055-4
I. F. Herbut and Z. Tesanovic, “Critical Fluctuations in
Superconductors and the Magnetic Field Penetration
Depth,” Physical Review Letters, Vol. 76, No. 24, 1996,
pp. 4588-4591. doi:10.1103/PhysRevLett.76.4588
[4] H. Kleinert and F. S. Nogueira, “Critical Behavior of the
Ginzburg-Landau Model Coupled to Massless Dirac Fer-
mions,” Physical Review B, Vol. 66, No. 1, 2002, p.
012504. doi:10.1103/PhysRevB.66.012504
[5] J. B. Marston, “U(1) Gauge Theory of the Heisenberg
Antiferromagnet,” Physical Review Letters, Vol. 61, No.
17, 1988, pp. 1914-1917.
doi:10.1103/PhysRevLett.61.1914
J. B. Marston and I. Affleck, “Large-n Limit of the Hub-
bard-Heisenberg Model,” Physical Review B, Vol. 39, No.
16, 1989, pp. 11538-11558.
doi:10.1103/PhysRevB.39.11538
D. H. Kim and P. A. Lee, “Theory of Spin Excitations in
Undoped and Underdoped Cuprates,” Annals of Physics,
Vol. 272, No. 1, 1999, pp. 130-164.
doi:10.1006/aphy.1998.5888
[6] H. Kleinert, “Disorder Version of the Abelian Higgs
Model and the Order of the Superconductive Phase Tran-
sition,” Lette re Al Nuov o Ciment o, Vol. 35, No. 13, 1982,
pp. 405-412. doi:10.1007/BF02754760
[7] S. Mo, J. Hove and A. Sudbo, “Order of the
Metal-to-Superconductor Transition,” Physical Review B,
Vol. 65, No. 10, 2002, p. 104501.
doi:10.1103/PhysRevB.65.104501
[8] M. Le Bellac, “Quantum and Statistical Field Theory,”
Oxford University Press, Oxford, 1992.
[9] H. Kleinert and V. Schulte-Frohlinde, “Critical Phenom-
ena in 4
-Theory,” World Scientific, Singapore, 2001.
http://www.physik.fu-berlin.de/kleinert/b8
[10] W. Hollik, E. Kraus and D. Stockinger, “Renormalization
and Symmetry Conditions in Supersymmetric QED,”
European Physical Journal C, Vol. 11, No. 2, 1999, pp.
365-381. doi:10.1007/s100529900216
[11] S. Ferrara and O. Piguet, “Perturbation Theory and Re-
normalization of Supersymmetric Yang-Mills Theories,”
Nuclear Physics B, Vol. 93, No. 2, 1975, pp. 261-302.
doi:10.1016/0550-3213(75)90573-8
[12] J. D. Bjorken and S. D. Drell, “Relativistic Quantum
Mechanics,” McGraw-Hill, New York, 1998.
[13] F. S. Nogueira and H. Kleinert, “Field Theoretical Ap-
proaches to the Superconducting Phase Transition,” The
Smithsonian/NASA Astrophysics D ata System.
[14] M. E. Peskin and D. V. Schroeder, “An Introduction to
Quantum Field Theory (Frontiers in Physics),” Westview
Press, New York, 1995.
M. Srednicki, “Quantum Field Theory,” Cambridge Uni-
versity Press, Cambridge, 2007.
[15] G. ‘t Hooft and M. J. G. Veltman, “Regularization and
Renormalization of Gauge Fields,” Nuclear Physics B,
Vol. 44, No. 1, 1972, pp. 189-213.
doi:10.1016/0550-3213(72)90279-9
[16] M. E. Machacek and M. T. Vaughn, “Two-Loop Renor-
malization Group Equations in a General Quantum Field
Theory: (I). Wave Function Renormalization,” Nuclear
Physics B, Vol. 222, No. 1, 1983, pp. 83-103.
doi:10.1016/0550-3213(83)90610-7
[17] J. Wess and J. Bagger, “Supersymmetry and Supergrav-
ity,” Princeton University Press, New Jersey, 1992.
[18] P. Fayet and J. Iliopoulos, “Spontaneously Broken Super-
gauge Symmetries and Goldstone Spinors,” Physics Let-
ters B, Vol. 51, No. 5, 1974, pp. 461-464.
doi:10.1016/0370-2693(74)90310-4