Vol.3, No.3, 199-207 (2011) Natural Science
http://dx.doi.org/10.4236/ns.2011.33026
Copyright © 2011 SciRes. OPEN ACCESS
Reaction of thiocarboxanilide derivatives of
2-phenylimino-3-phenyl-4-thiazolidinone and
1,3-diphenyl-2-thioxo-4-imidazolone with hydrazonoyl
halides and active chloromethylene compounds
Hamdi M. Hassaneen1*, Omar A. Miqdad2, Nada M. Abunada2, Ahmad A. Fares1
1Chemistry, Faculty of Science, Cairo University, Cairo, Egypt; *Corresponding Author: hamdihass@gmail.com
2Department of Chemistry, Faculty of Applied Sciences, Al-Aqsa University, Gaza, Palestine;
nadanadannrs@yahoo.com; miqdadomar@hotmail.com
Received 7 January 2011; revised 10 February 2011; accepted 13 February 2011.
ABSTRACT
The potassium salts of thiocarboxanilide of 2-
phenylimino-3-phenyl-4-thiazolidinone and 1,3-
diphenyl-2-thioxo-4-imidazolone react with hy-
drazonoyl halides in N,N-dimethylformamide to
afford the corresponding 1,3,4-thiadiazoline de-
rivatives. 2-Phenylimino-3-phenyl-4-thiazolidinone
reacts with active chloromethylene compounds
in N,N-dimethylformamide to give the corre-
sponding thiazolylidenethiazolidin-4-one deriva-
tives. The new compounds were characterized
using IR, 1H NMR, 13C NMR and mass spectra.
Keywords: Hydrazonoyl Halides;
1,3,4-Thiadiazoline; Thiazolidinone
1. INTRODUCTION
1,3,4-Thiadiazole and its derivatives possess an inter-
esting biological activity probably conferred to them by
the strong aromaticity of this ring system [1]. It is known
that many of its derivatives have antibacterial [2], an-
timicrobial [3], antimycobacterial [4,5], antifungal [6,7],
antidepressant [8], anti-inflammatory [9], analgesic[10]
activities and cardiotonic [11] action being notable. Be-
sides, the thiazoline ring is associated with a variety of
pharmacological actions, including antimicrobial [12],
anti-inflammatory [13], anti-tumor [14], and antioxidant
[15] actions. Moreover, imidazolinone derivatives con-
stitute an important class of therapeutic activities such as
anticonvulsant [16], potent central nervous system (CNS)
depressant [17], and acting on α-adrenergic and/or imi-
dazoline receptors [18]. Recently, some new imidazoli-
none derivatives have been reported as antimicrobial
[19,20], histamine H3-receptor antagonist [21] and
L-DOPA prodrugs in the treatment of Parkinson’s dis-
ease [22]. Some workers have recognized 5-imidazolone
as having anticancer activity [20]. Prompted by these
findings and due to our interest in the synthesis of new
heterocyclic compounds with potential biological activi-
ties [23-26] and in continuation of our work on the syn-
thesis of hetaryl-ylidene derivatives [27-29], we report
herein the synthesis of some new 1,3,4-thiadiazoline-
(thiazoline)-2-hetarylylidene derivatives that might be of
pharmacological importance.
2. EXPERIMENTAL
The melting points were determined on an electro-
thermal melting point apparatus and are uncorrected. IR
spectra were recorded in KBr discs on a Pye Unicam SP
3300 and a Shimadzu FT-IR 8101 PC infrared spectro-
photometers. The NMR spectra were recorded on a Var-
ian Mercury VX-300 MHz NMR spectrometer in
DMSO-d6 solutions using TMS as an internal reference.
1H NMR spectra were run at 300 MHz and 13C NMR
spectra were run at 75.46 MHz in dimethylsulfoxide
(DMSO-d6). Electron impact mass spectra were recorded
on a Shimadzu GCMS-QP 1000 EX spectrometer at 70
eV. Elemental analyses were carried out at the Micro
Analytical Center at Cairo University, Giza, Egypt.
2-Phenylimino-3-phenyl-4-thiazolidinone 2 [30], 1,3-
diphenyl-2-thioxo- 4-imidazolone 13 [31] and hydrazo-
noyl halides 1a [32], 1b [33], 1c [34], 1d [35], 1e [36], 1f
[37], 1g [38], 1h [39], 1i [40], 1j [41] and 1k [42] were
prepared according to the reported literature methods.
Synthesis of 3,5-disubstituted 2-[2’-phenylimino-3’-
phenyl-4’-oxothiazo lidin-5'-ylidene]-2,3-dihydro-1,3,4-
thiadiazole derivatives 7a-k, 3,5-disubstituted 2-[1’,3’-
diphenyl-2’-thioxo-4’-oxoimidazolidin-5’-ylidne]-2,3-
dihydro-1,3,4-thiadiazole derivatives 15a-h and 2-
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
200
phenylimino-3-phenyl-5-[3’-phenyl-4’,5’-disubstituted-
thiazol-2’(3’H)ylidene]thiazolidin-4-one derivatives
19a-e: General method [29].
To a stirred suspension of potassium hydroxide (0.23
g, 5 mmol) in dimethylformamide (20 ml) 2-phenylimino-
3-phenyl-4-thiazolidinone 2 or 13 (5 mmol) was added.
The appropriate arylisothiocyanate (5 mmol) was added
to the resulting solution and the reaction mixture was
stirred for 30 min at room temperature. A solution of the
hydrazonoyl halide 1a-k or active α-chloromethylene
compound 16a-e in dimethylformamide was then added
to the reaction mixture and stirred for 24 h at room tem-
perature, then treated with methanol (10 ml). The solid
formed was collected, washed with water and crystal-
lized from a suitable solvent to give the respective 7a-k,
15a-h and 19a-e.
3,5-Diphenyl-2-[2’-phenylimino-3’-phenyl-4’-oxoth
iazolidin-5’-ylidene]-2,3-dihy dro-1,3,4-thiadiazole 7a,
mp 270-1˚C; 67% yield (dimethylformamide); IR
(KBr) νmax/cm-1 1625.2 (CO); 1H NMR (DMSO-d6) δ
7.12-8.14 (m, Ar-H) ppm. 13C NMR (DMSO-d6) δ
120.37, 120.75, 123.92, 124.15, 125.12, 125.30, 126.31,
128.11, 128.23, 129.32, 130.46, 131.44 (Ar-CH), 135.21,
137.77, 139.34, 139.64, 142.92, 155.26, 157.22, 159.97,
165.72 (Ar-C, C = C, C = N, C = O) ppm. MS m/z 504,
440, 282, 215, 179, 146, 91; Anal. Calcd. for C29H20N4OS2
(504.62) C, 69.02; H, 3.99; N, 11.10; S, 12.71. Found: C,
69.10; H, 4.00; N, 11.00; S, 12.69%.
3-Phenyl-2-[2’-phenylimino-3’-phenyl-4’-oxothiazo
lidin-5’-ylidene]-5-styryl-2,3-dihydro-1,3,4-thiadiazole
7b, mp 308-9˚C; 63% yield (dimethylformamide); IR
(KBr) νmax/cm-1 1625.4 (CO); 1H NMR (DMSO-d6) δ
6.62 (d, J = 15 Hz, 1H), 7.54 (d, J = 15 Hz, 1H),
6.92-7.93 (m, 20H, Ar-H) ppm. 13C NMR (DMSO-d6) δ
120.42, 120.65, 123.91, 124.21, 125.18, 126.42, 126.82,
128.09, 128.11, 128.22, 128.26, 128.80, 129.41, 135.21
(Ar-CH, CH = CH), 137.81, 138.94, 139.66, 142.09,
142.87, 154.72, 155.24, 159.83, 165.70 (Ar-C, C = C, C =
N, C = O) ppm. MS m/z 530, 466, 308, 241, 179, 146,
91; Anal. Calcd. for C31H22N4OS2 (530.66) C, 70.16; H,
4.18; N, 10.56; S, 12.08. Found: C, 70.20; H, 4.20; N,
10.52; S, 12.10%.
3-(4-Nitrophenyl)-2-[2’-phenylimino-3’-phenyl-4’-
oxothiazolidin-5’-ylidene]-5-(2-thienyl)-2,3-dihydro-1,3,
4-thiadiazole 7c, mp 282-3˚C; 60% yield (ethanol); IR
(KBr) νmax/cm-1 1629.1 (CO); 1H NMR (DMSO-d6) δ
6.84-8.17 (m, Ar-H) ppm. 13C NMR (DMSO-d6) δ
119.02, 120.36, 123.71, 123.88, 125.26, 125.92, 128.19,
128.26, 129.31, 134.71, 135.31, 136.72 (Ar-CH), 137.58,
139.58, 142.87, 143.21, 144.52, 155.23, 157.26, 159.74,
165.68 (Ar-C, C = C, C = N, C = O) ppm. MS m/z 555,
491, 332, 265, 224, 191, 136, 83, 51; Anal. Calcd. for
C27H17N5O3S3 (555.65) C, 58.36; H, 3.08; N, 12.60; S,
17.31. Found: C, 58.40; H, 3.10; N, 12.55; S, 17.23%.
5-(2-Furyl)-3-(4-nitrophenyl)-2-[2’-phenylimino-3’-
phenyl-4’-oxothiazolidin-5’-ylidene]-2,3-dihydro-1,3,
4-thiadiazole 7d, mp 325-6˚C; 69% yield (dimethyl-
formamide); IR (KBr) νmax/cm-1 1633.4 (CO); 1H NMR
(DMSO-d6) δ 6.59-8.31 (m, Ar-H) ppm. 13C NMR
(DMSO-d6) δ 112.62, 118.73, 120.41, 122.71, 123.67,
123.84, 125.26, 125.98, 128.32, 129.31, 135.33, 137.63
(Ar-CH), 139.59, 143.28, 144.52, 148.23, 152.82,
155.32, 157.83, 159.78, 165.69 (Ar-C, C=C, C=N, C=O)
ppm. MS m/z 539, 475, 316, 249, 224, 191, 136, 67, 51;
Anal. Calcd. for C27H17N5O4S2 (539.58) C, 60.10; H,
3.18; N, 12.98; S, 11.89. Found: C, 60.00; H, 3.20; N,
13.00; S, 11.82%.
3-(4-Nitrophenyl)-2-[2’-phenylimino-3’-phenyl-4’-
oxothiazolidin-5’-ylidene]-5-phenyl-2,3-dihydro-1,3,
4-thiadiazole 7e, mp 198-9˚C; 67% yield (ethanol); IR
(KBr) νmax/cm-1 1630.3 (CO); 1H NMR (DMSO-d6) δ
7.13-8.26 (m, Ar-H) ppm. 13C NMR (DMSO-d6) δ
118.72, 120.34, 123.63, 123.86, 125.27, 125.30, 125.84,
128.19, 129.33, 130.44, 131.24, 135.40, 137.64, 137.75,
139.61 (Ar-CH), 142.79, 144.54, 155.38, 157.31, 159.76,
165.66 (Ar-C, C = C, C = N, C = O) ppm. MS m/z 549,
485, 327, 260, 223, 191, 135, 77, 51; Anal. Calcd. for
C29H19N5O3S2 (549.62) C, 63.37; H, 3.48; N, 12.74; S,
11.67. Found: C, 63.31; H, 3.44; N, 12.70; S, 11.61%.
5-Acetyl-3-phenyl-2-[2’-phenylimino-3’-phenyl-4’-
oxothiazolidin-5’-ylidene]-2,3-dihydro-1,3,4-thiadiazole
7f, mp 250-2˚C; 68% yield (ethanol); IR (KBr) νmax/cm-1
1661.2 (CO acetyl), 1629.5 (CO thiazolinone); 1H NMR
(DMSO-d6) δ 2.35 (s, 3H, CH3), 6.72-7.81 (m, 15H,
Ar-H) ppm. 13C NMR (DMSO-d6) δ 24.76 (CH3), 120.41,
120.78, 123.91, 124.53, 125.26, 126.40, 128.16, 128.25,
129.23 (Ar-CH), 135.34, 139.52, 139.65, 144.21, 155.31,
156.21, 159.02, 165.74, 188.54 (Ar-C, C = C, C = N, C =
O) ppm. MS m/z 470, 406, 248, 181, 178, 147, 91, 77,
51; Anal. Calcd. for C25H18N4O2S2 (470.08) C, 63.81; H,
3.86; N, 11.91; S, 13.63. Found: C, 63.74; H, 3.81; N,
11.87; S, 13.60%.
Ethyl 3-phenyl-2-[2’-phenylimino-3’-phenyl-4’-
oxothiazolidin-5’-ylidene]-2,3-dihydro-1,3,4-thiadia-
zole-5-carboxylate 7g, mp 144-5˚C; 68% yield (etha-
nol); IR (KBr) νma x /c m-1 1745.1 (CO ester), 1629.2 (CO
thiazolinone); 1H NMR (DMSO-d6) δ 1.41 (t, J = 7.2 Hz,
3H, CH3), 4.43 (q, J = 7.2 Hz, CH2), 6.72-7.41 (m, 15H,
Ar-H) ppm. 13C NMR (DMSO-d6) δ 15.32 (CH3), 64.17
(CH2), 119.97, 120.39, 123.82, 123.96, 125.31, 125.39,
128.21, 128.31, 129.14 (Ar-CH), 136.10, 139.36, 139.54,
144.62, 154.23, 154.67, 159.13, 165.81, 166.62 (Ar-C,
C = C, C = N, C = O) ppm. MS m/z 500, 279, 250, 179,
135, 103, 77, 51; Anal. Calcd. for C26H20N4O3S2 (500.59)
C, 62.38; H, 4.03; N, 11.19; S, 12.81. Found: C, 62.34;
H, 3.97; N, 11.10; S, 12.80%.
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
201201
3-Phenyl-5-phenylaminoca rbonyl-2-[2’-phenylimino-
3’-phenyl-4’-oxothiazolidin-5’-ylidene]-2,3-dihydro-
1,3,4-thiadiazole 7h, mp 307-8˚C; 70% yield (ethanol);
IR (KBr) νmax /c m-1 1661.9 (broad CO); 1H NMR
(DMSO-d6) δ 7.34-8.41 (m, NH, Ar-H) ppm. 13C NMR
(DMSO-d6) δ 120.36, 121.12, 122.38, 122.79, 124.12,
124.54, 124.97, 125.61, 128.18, 128.31, 128.75, 128.91
(Ar-CH), 135.41, 139.42, 139.67, 140.66, 146.68,
153.14, 157.87, 159.18, 165.32, 165.45 (Ar-C, C = C, C
= N, C = O) ppm. MS m/z 547, 325, 258, 178, 147, 103,
91, 77; Anal. Calcd. for C30H21N5O2S2 (547.65) C, 65.78;
H, 3.87; N, 12.79; S, 11.71. Found: C, 65.81; H, 3.94; N,
12.83; S, 11.66%.
5-Benzoyl-3-phenyl-2-[2’-phenylimino-3’-phenyl-4’-
oxothiazolidin-5’-ylidene]-2,3-dihydro-1,3,4-thiadiazole
7i, mp 256-7˚C; 65% yield (ethanol); IR (KBr) νmax/cm-1
1674.3 (CO benzoyl), 1629.9 (CO thiazolinone); 1H
NMR (DMSO-d6) δ 7.16-8.34 (m, Ar-H) ppm. 13C NMR
(DMSO-d6) δ 120.32, 120.39, 123.98, 124.54, 125.21,
126.39, 128.24, 128.27, 129.12, 129.19, 129.81, 133.47
(Ar-CH), 135.41, 136.46, 139.43, 139.49, 143.92,
155.61, 156.21, 158.93, 165.80, 182.96 (Ar-C, C=C, C =
N, C = O) ppm. MS m/z 532, 310, 243, 178, 163, 147,
103, 91, 77; Anal. Calcd. for C30H20N4O2S2 (532.63) C,
67.65; H, 3.78; N, 10.52; S, 12.04. Found: C, 67.70; H,
3.81; N, 10.48; S, 12.00%.
3-Phenyl-2-[2’-phenylimino-3’-phenyl-4’-oxothiazo-
lidin-5’-ylidene]-5-(2-thienoyl)-2,3-dihydro-1,3,4-thia-
diazole 7j, mp 122-3˚C; 66% yield (ethanol); IR (KBr)
νmax/cm-1 1674.4 (CO thienoyl), 1625.6 (CO thiazoli-
none); 1H NMR (DMSO-d6) δ 6.92-8.34 (m, Ar-H) ppm.
13C NMR (DMSO-d6) δ 119.84, 120.40, 124.31, 124.45,
125.30, 125.87, 128.19, 128.21, 128.32, 129.21, 135.11,
135.42 (Ar-CH), 137.19, 139.39, 139.48, 143.89, 144.12,
154.31, 155.91, 158.94, 165.28, 175.95 (Ar-C, C = C, C =
N, C = O) ppm. MS m/z 538, 316, 249, 179, 91, 77;
Anal. Calcd. for C28H18N4O2S3 (538.66) C, 62.43; H,
3.37; N, 10.40; S, 17.86. Found: C, 62.40; H, 3.35; N,
10.36; S, 17.90%.
5-(2-Naphthoyl)-3-phenyl-2-[2’-phenylimino-3’-
phenyl-4’-oxothiazolidin-5’-ylidene]-2,3-dihydro-1,3,
4-thiadiazole 7k, mp 118-9˚C; 68% yield (ethanol); IR
(KBr) νmax/cm-1 1638.7 (CO naphthoyl), 1629.9 (CO
thiazolinone); 1H NMR (DMSO-d6) δ 7.15-8.39 (m, 21H,
Ar-H), 8.85 (s, 1H, naphthoyl α-H) ppm. 13C NMR
(DMSO-d6) δ 119.68, 120.32, 123.68, 124.16, 125.23,
125.49, 126.40, 126.58, 127.76, 127.84, 128.10, 128.18,
129.23, 129.29, 129.87, 132.28 (Ar-CH), 132.51, 132.86,
135.50, 135.61, 139.44, 142.26, 144.18, 155.29, 155.63,
159.13, 165.82, 183.60 (Ar-C, C = C, C = N, C = O)
ppm. MS m/z 582, 360, 293, 213, 181, 155, 103, 91, 77;
Anal. Calcd. for C34H22N4O2S2 (582.69) C, 70.08; H,
3.81; N, 9.62; S, 11.01. Found: C, 70.10; H, 3.80; N,
9.57; S, 11.00%.
3,5-diphenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-oxoimid-
azolidin-5’-ylidne]-2,3-dihydro-1,3,4-thiadiazole 15a,
mp 136-8˚C; 63% yield (ethanol); IR (KBr) νmax/cm-1
1670.1 (CO); 1H NMR (DMSO-d6) δ 7.12-8.19 (m, Ar-H)
ppm. 13C NMR (DMSO-d6) δ 120.31, 120.40, 120.73,
123.84, 123.98, 124.10, 125.31, 127.93, 128.10, 128.21,
130.36, 131.43 (Ar-CH), 137.71, 138.92, 139.41, 139.52,
142.93, 156.17, 157.22, 165.74, 178.62 (Ar-C, C = C, C =
N, C = O, C = S) ppm. MS m/z 504, 341, 274, 238, 206,
135, 103, 91, 77; Anal. Calcd. for C29H20N4OS2 (504.62)
C, 69.02; H, 3.99; N, 11.10; S, 12.71. Found: C, 69.00;
H, 4.00; N, 11.00; S, 12.65%.
3-Phenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-oxoimidazol-
idin-5’-ylidne]-5-styryl-2,3-dihydro-1,3,4-thiadiazole
15b, mp 151-2˚C; 65% yield (ethanol); IR (KBr) νmax/
cm-1 1675.3 (CO); 1H NMR (DMSO-d6) δ 6.81 (d, J = 15
Hz, 1H), 7.63 (d, J = 15 Hz, 1H), 7.26-7.83 (m, 20H,
Ar-H) ppm. 13C NMR (DMSO-d6) δ 119.64, 119.85,
120.61, 123.78, 123.94, 124.12, 126.78, 127.92, 128.10,
128.15, 128.19, 128.23, 128.71, 137.76 (Ar-CH, CH =
CH), 138.96, 139.12, 140.12, 142.01, 143.26, 154.34,
155.31, 165.74, 178.51 (Ar-C, C = C, C = N, C = O, C =
S) ppm. MS m/z 530, 367, 276, 206, 135, 103, 91, 77;
Anal. Calcd. for C31H22N4OS2 (530.66) C, 70.16; H4.18, ;
N, 10.56; S, 12.08. Found: C, 70.10; H, 4.15; N, 10.50; S,
12.00%.
3-(4-Nitrophenyl)-2-[1’,3’-diphenyl-2’-thioxo-4’-
oxoimidazolidin-5’-ylidne]-5-(2-thienyl)-2,3-dihydro-
1,3,4-thiadiazole 15c, mp 144-5˚C; 70% yield (ethanol);
IR (KBr) νmax/cm-1 1670.9 (CO); 1H NMR (DMSO-d6) δ
6.85-8.16 (m, Ar-H) ppm. 13C NMR (DMSO-d6) δ
119.67, 120.03, 120.16, 123.76, 123.92, 124.18, 127.73,
128.13, 128.21, 134.80, 136.64, 137.61 (Ar-CH), 139.54,
139.62, 143.14, 143.34, 144.32, 155.31, 157.32, 165.73,
178.43 (Ar-C, C = C, C = N, C = O, C = S) ppm. MS
m/z 555, 420, 392, 251, 136, 90, 77, 51; Anal. Calcd. for
C27H17N5O3S3 (555.65) C, 58.36; H, 3.08; N, 12.60; S,
17.31. Found: C, 58.43; H, 3.05; N, 12.54; S, 17.27%.
5-Acetyl-3-phenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-
oxoimidazolidin-5’-ylidne]-2,3-dihydro-1,3,4-thiadi-
azole 15d, mp 184-5˚C; 70% yield (ethanol); IR (KBr)
νmax/cm-1 1734.2 (CO acetyl), 1680.8 (CO imidazoline);
1H NMR (DMSO-d6) δ 2.42 (s, 3H, CH3), 6.63-8.12 (m,
15H, Ar-H) ppm. 13C NMR (DMSO-d6) δ 24.84 (CH3),
119.23, 120.26, 120.52, 124.18, 124.32, 124.51, 128.19 ,
128.26, 128.34 (Ar-CH), 139.36, 139.48, 139.67, 144.32,
155.29, 156.51, 165.69, 179.63, 184.26 (Ar-C, C = C, C =
N, C = O, C = S) ppm. MS m/z 470, 406, 307, 240, 135,
103, 91, 77, 43; Anal. Calcd. for C25H18N4O2S2 (470.56)
C, 63.81; H, 3.86; N, 11.91; S, 13.63. Found: C, 63.80;
H, 3.82; N, 11.90; S, 13.60%
Ethyl 3-Phenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-oxo-
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
202
imidazolidin-5’-ylidne]-2,3-dihydro-1,3,4-thiadiazole-
5-carboxylate 15e, mp 221-3˚C; 70% yield (ethanol); IR
(KBr) νmax/cm-1 1750.8 (CO ester), 1690.1 (CO imida-
zoline); 1H NMR (DMSO-d6) δ 1.41 (t, J = 7.2 Hz, CH3),
4.48 (q, J = 7.2 Hz, CH2), 6.83-7.54 (m, 15H, Ar-H) ppm.
13C NMR (DMSO-d6) δ 14.93 (CH3), 64.31 (CH2), 119.68,
120.13, 120.42, 123.96, 124.16, 124.31, 128.22, 128.29,
128.34 (Ar-CH), 139.48, 139.54, 139.62, 144.61, 154.71,
155.21, 165.74, 166.52, 178.94 (Ar-C, C = C, C = N, C =
O, C = S) ppm. MS m/z 500, 337, 135, 103, 77, 51; Anal.
Calcd. for C26H20N4O3S2 (500.59) C, 62.38; H, 4.03; N,
11.19; S, 12.81. Found: C, 62.34; H, 3.96; N, 11.20; S,
12.77%.
3-Phenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-oxoimidazol-
idin-5’-ylidne]-5-phenylaminocarbonyl-2,3-dihydro-
1,3,4-thiadiazole 15f, mp 211-3˚C; 70% yield (ethanol);
IR (KBr) νmax/cm-1 3387.3 (NH), 1696.1 (CO imida-
zoline), 1671.4 (CO amide); 1H NMR (DMSO-d6) δ
7.10-8.42 (m, Ar-H, NH) ppm. 13C NMR (DMSO-d6) δ
119.84, 120.61, 121.31, 122.41, 122.80, 123.84, 124.16,
124.49, 128.26, 128.34, 128.43, 128.68 (Ar-CH), 139.35,
139.62, 139.71, 140.37, 143.96, 155.43, 156.33, 165.46,
165.67, 179.36 (Ar-C, C = C, C = N, C = O, C = S) ppm.
MS m/z 547, 384, 178, 146, 120, 104, 91, 77; Anal. Calcd.
for C30H21N5O2S2 (547.65) C, 65.79; H, 3.87; N, 12.79; S,
11.71. Found: C, 65.74; H, 3.90; N, 12.81; S, 11.68%.
5-Benzoyl-3-phenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-
oxoimidazolidin-5’-ylidne]-2,3-dihydro-1,3,4-thiadi-
azole 15g, mp 121-2˚C; 68% yield (ethanol); IR (KBr)
νmax/cm-1 1650.9 (broad CO); 1H NMR (DMSO-d6) δ
7.19-8.46 (m, Ar-H) ppm. 13C NMR (DMSO-d6) δ
119.82, 120.41, 120.91, 123.85, 124.38, 124.44, 128.17,
128.28, 128.32, 129.12, 129.75, 133.46 (Ar-CH), 136.51,
138.84, 139.26, 139.63, 143.84, 155.73, 156.31, 165.76,
178.76, 183.55 (Ar-C, C = C, C = N, C = O, C = S) ppm.
MS m/z 532, 369, 206, 135, 105, 91, 77; Anal. Calcd. for
C30H20N4O2S2 (532.63) C, 67.65; H, 3.78; N, 10.52; S,
12.04. Found: C, 67.70; H, 3.81; N, 10.49; S, 12.00%.
3-Phenyl-2-[1’,3’-diphenyl-2’-thioxo-4’-oxoimidazol-
idin-5’-ylidene]-5-(2-thienoyl)-2,3-dihydro-1,3,4-thiad-
iazole 15h, mp 167-8˚C; 70% yield (ethanol); IR (KBr)
νmax/cm-1 1650.8 (broad CO); 1H NMR (DMSO-d6) δ
7.14-8.43 (m, Ar-H) ppm. 13C NMR (DMSO-d6) δ
119.67, 120.23, 120.91, 123.78, 124.13, 124.32, 127.93,
128.14, 128.19, 128.26, 135.12, 136.78 (Ar-CH), 139.34,
139.64, 140.12, 143.21, 144.13, 155.24, 156.32, 165.72,
174.86, 178.74 (Ar-C, C = C, C = N, C = O, C = S) ppm.
MS m/z 538, 375, 168, 137, 110, 91, 77; Anal. Calcd. for
C28H18N4O2S3 (538.66) C, 62.43; H, 3.37; N, 10.40; S,
17.86. Found: C, 62.40; H, 3.34; N, 10.37; S, 17.82%.
Ethyl 3-phenyl-4-methyl-2-[3’-phenyl-2’-phenyli-
mino-4-oxothiazolidin-5’-ylidene]-2(3H) thiazolecar-
boxylate 19a, mp 294-5˚C; 61% yield (ethanol); IR
(KBr) νmax/cm-1 1696.5 (CO ester), 1620.9 (CO thiazoli-
none); 1H NMR (DMSO-d6) δ 1.32 (t, J = 7.1 Hz, CH3),
2.23 (s, 3H, CH3), 4.36 (q, J = 7.1 Hz, CH2), 6.73-7.54
(m, 15H, Ar-H) ppm. 13C NMR (DMSO-d6) δ 14.38
(CH3), 14.85 (CH3), 63.92 (CH2), 119.82, 120.41, 123.43,
123.83, 125.24, 126.42, 127.93, 128.19, 129.25 (Ar-CH),
153.21, 136.40, 139.35, 140.13, 143.43, 155.42, 157.62,
159.46, 165.71, 166.55 (Ar-C, C = C, C = N, C = O) ppm.
MS m/z 513, 291, 203, 194, 90, 77, 73, 51; Anal. Calcd.
for C28H23N3O3S2 (513.63) C, 65.48; H, 4.51; N, 8.18; S,
12.49. Found: C, 65.51; H, 4.50; N, 8.20; S, 12.52%.
2-Phenylimino-3-phenyl-5-[4’-methyl-3’-phenyl-5’-
phenylaminocarbonylthiazol-2’(3’H)ylidene] thia-
zolidin-4-one 19b, mp 323-5˚C; 70% yield (dimethyl-
formamide); IR (KBr) νmax/cm-1 3340.2 (NH), 1660.6
(broad CO); 1H NMR (DMSO-d6) δ 2.24 (s, 3H, CH3),
6.74-7.53 (m, NH, 20H, Ar-H) ppm. 13C NMR (DMSO-
d6) δ 15.23 (CH3), 119.82, 120.42, 122.10, 122.63,
124.10, 124.23, 125.34, 125.92, 128.13, 128.25, 128.62,
129.26 (Ar-CH), 133.67, 136.21, 139.41, 140.02, 140.24,
143.13, 155.42, 156.78, 160.34, 165.81, 166.98 (Ar-C,
C = C, C = N, C = O) ppm. MS m/z 560, 338, 250, 194,
160, 120, 91, 77; Anal. Calcd. for C32H24N4O2S2 (560.68)
C, 68.55; H, 4.31; N, 9.99; S, 11.44. Found: C, 68.61; H,
4.30; N, 10.00; S, 11.40%.
2-Phenylimino-3-phenyl-5-[3’,4’-diphenylthiazol-2’
(3'H)ylidene]thiazolidin-4-one 19c, mp 278-9˚C; 65%
yield (ethanol); IR (KBr) νmax/cm-1 1615.7 (CO thiazoli-
none); 1H NMR (DMSO-d6) δ 6.16-7.61 (m, 21H, Ar-H)
ppm. 13C NMR (DMSO-d6) δ 119.78, 120.21, 123.96,
124.14, 125.23, 125.84, 126.30, 128.11, 128.31, 129.15,
130.12, 130.93, 132.62 (Ar-CH, CH = C), 135.94, 136.84,
139.40, 140.02, 143.21, 143.63, 155.35, 159.68, 165.76
(Ar-C, C = C, C = N, C = O) ppm. MS m/z 503, 281, 194,
121, 77; Anal. Calcd. for C30H21N3OS2 (503.63) C, 71.54;
H, 4.20; N, 8.34; S, 12.73. Found: C, 71.50; H, 4.16; N,
8.30; S, 12.70%.
2-Phenylimino-3-phenyl-5-[5’-benzoyl-3’,4’-diphen-
ylthiazol-2’(3’H)ylidene]thiazolidin-4-one 19d, mp
345-7˚C; 67% yield (dimethylformamide); IR (KBr)
νmax/cm-1 1710.1 (CO benzoyl), 1660.3 (CO thiazolinone);
1H NMR (DMSO-d6) δ 6.76-7.62 (m, 25H, Ar-H) ppm.
13C NMR (DMSO-d6) δ 119.58, 120.16, 123.89, 124.15,
125.36, 125.78, 126.30, 128.15, 128.41, 129.11, 129.23,
129.82, 130.26, 131.36, 133.39 (Ar-CH), 135.34, 135.74,
136.61, 136.84, 139.41, 139.91, 143.19, 155.24, 156.32,
159.69, 166.42, 184.18 (Ar-C, C = C, C = N, C = O) ppm.
MS m/z 607, 388, 387, 386, 385, 355, 308, 280, 265,
247, 194, 135, 121, 105, 77, 51; Anal. Calcd. for
C37H25N3O2S2 (607.74) C, 73.12; H, 4.15; N, 6.91; S,
10.55. Found: C, 73.10; H, 4.10; N, 6.88; S, 10.51%.
2-Phenylimino-3-phenyl-5-[4’-methyl-3’-phenylthia-
zol-2’(3’H)ylidene]thiazolidin-4-one 19e, mp 220-2˚C;
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
203203
69% yield (ethanol); IR (KBr) νmax/cm-1 1615.3 (CO thi-
azolinone); 1H NMR (DMSO-d6) δ 1.85 (s, 3H, CH3),
6.15-7.42 (m, 16H, Ar-H) ppm. 13C NMR (DMSO-d6) δ
15.42 (CH3), 119.62, 120.31, 123.93, 124.12, 125.41,
125.86, 128.12, 128.26, 129.08, 131.92 (Ar-CH, CH =
C), 135.83, 139.34, 139.84, 143.21, 144.18, 155.34,
159.77, 165.77 (Ar-C, C = C, C = N, C = O) ppm. MS
m/z 441, 219, 131, 121, 103, 91, 77; Anal. Calcd. for
C25H19N3OS2 (441.56) C, 68.00; H, 4.34; N, 9.52; S,
14.52. Found: C, 67.92; H, 4.28; N, 9.48; S, 14.50%.
3. RESULTS AND DISCUSSION
The intermediates 4A (Ar’ = ph) and 4B (Ar’ = 4-
CH3C6H4) were prepared by the reaction of 2-phenyli-
mino-3-phenyl-4-thiazolidinone 2 with arylisothiocyanate
3A,B in dimethylformamide in the presence of potas-
sium hydroxide (Scheme 1). Treatment of 4A with hy-
drazonoyl halides 1a-e in dimethylformamide afforded,
in each case, one isolable product as evidenced by TLC
analysis of the crude products. Both mass and elemental
Scheme 1.
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
204
analyses data of the products isolated are compatible
with the two possible structures 7 and 10 (Scheme 1).
However, the latter structure 10 was discarded as the
reaction products were recovered unchanged after treat-
ment with mercuric oxide in boiling acetic acid while the
treatment is expected to convert 10 -if present- to 12, the
C = S double bond is known to be more reactive dipola-
rophile than the C = C double bond [43], and reaction of
acyclic β-ketothioanilides with 1 has been reported to
give 2-alkylidene derivatives [44]. Accordingly, the
product isolated from reaction 1a with 4A or 4B is as-
signed structure 7. This assignment was substantiated by
the finding that reactions of 1a with either 4A or 4B
yield one product which is the same in both cases indi-
cating the elimination of an arylamine molecule during
the reaction to give 7. To account for the formation of 7
it is suggested that the reaction starts with the formation
of thiohydrazonate ester 5 followed by intramolecular
cyclization to give 6 which in turn eliminated arylamine
to give 7.
Stereochemically, the isolated products can have ei-
ther the 7 or 11 configurations. Molecular models indi-
cate that structure 11 suffers severe steric interactions
due to the close proximity of N-aryl group and C = O
group. On this basis we suggest that the configuration of
the products isolated is the less hindered structure 7.
Similarly, treatment of 1,3-diphenyl-2-thioxo-4-imi-
dazolinon-5-thiocarboxanilide 14A (prepared by the re-
action of 1,3-diphenyl-2-thioxo-4-imidazolone 13 with
phenylisothiocyanate 3A in dimethylformamide in the
presence of potassium hydroxide) with hydrazonoyl
halides 1a-c,f-j afforded a single product in each case
and was assigned structure 15 (Scheme 2). The structure
of the latter products was established on the basis of its
elemental analysis and spectroscopic data (Experimen-
tal). The IR spectrum of the isolated product 15a, taken
as example, revealed the appearance of ring carbonyl
absorption band near 1670 cm-1 in addition, its mass
spectrum revealed a peak corresponding to the molecular
ion m/z 504.
In the course of the previous reaction it was found that
the reaction proceeds via elimination of an arylamine to
give the product. This finding promoted us to perform
the reaction of 4A with active α-chloromethylene com-
pounds 16a-e to investigate if such reaction will lead to
thiazoline 19 and/or 1,3-oxathiol 20. Previous literature
reports indicated that the reaction of active α-chloro-
methylene compounds of simple ketones and nitriles
with potassium salts of acyclic thioanilide gave the thia-
zoline derivatives [45], while with cyclic thioanilide
gave 1,3-oxathiol derivatives [28].
Treatment of 4A with ethyl 2-chloro-3-oxobutanoate
16a in dimethylformamide afforded a single product as
evidenced by TLC and 1H-NMR of the crude products
(Scheme 3).
Both elemental and spectroscopic analyses data were
found compatible with 2,3-dihydro-3-phenylthiazole de-
rivatives structure 19 and not the 1,3-oxathiol-2-ylidene
derivatives 20 we reported earlier [28]. Compound 4A
reacted similarly with varieties of active α-chlorome-
thylene compounds 16b-e and gave the corresponding
19b-e respectively. The reaction pathway that seems to
account for the formation of 19 from 5 and 16 is outlined
in Scheme 3. It is proposed that the reaction involves
nucleophilic substitution to give 17. Cyclization of the
latter product leads to the formation of 18 which loses
the elements of water to give 19. These products can be
assigned one of the two stereoisomeric structures (Z)-19
Scheme 2.
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
205205
Scheme 3.
or (E)-19 (Scheme 3). The present data cannot distinguish
between these two isomers, however. The elemental
analyses and IR spectroscopic data of compounds 19
were consistent with the assigned structures. The struc-
tures of the 19 were also ascertained by the 1H NMR,
13C NMR and MS measurements (Experimental).
4. CONCLUSIONS
The reaction of hydrazonoyl halides 1a-k with thio-
carboxanilide derivatives 4 and 14 gave the correspond-
ing 1,3,4-thiadiazole derivatives 7 and 15 similar to the
products previously obtained with different thiocarbox-
anilide derivatives [27]. The reaction of active α-chloro-
methylene ketones with thiocarboxanilide derivatives
gave the thiazoline derivatives 19, contrary to the previous
finding we have reported [28] which gave 1,3-oxathiol
derivatives.
REFERENCES
[1] Kormis, G. (1984) 1,3,4-thiadiazoles. In: A. R. Katritzky,
Ed., Comprehensive Heterocyclic Chemistry, Pergamon
Press, 6, 545-578.
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
206
[2] Hussein, M.A., Kafafy, A.H.N., Abdel-Moty, S.G. and
Abou-Ghadir, O.M.F. (2009) Synthesis and biological
activities of new substituted thiazoline-quinoline deriva-
tives. Acta Pharmaceutica, 59, 365-382.
doi:10.2478/v10007-009-0033-8
[3] Pintilie, O., Profire, L., Sunel, V., Popa, M. and Pui, A.
(2007) Synthesis and antimicrobial activity of some new
1,3,4-thiadiazole and 1,2,4-triazole compounds having a
D,L-methionine moiety. Molecules, 12, 103-113.
doi:10.3390/12010103
[4] Faroumadi, A., Mirzaei, M. and Shafiee, A. (2001) Anti-
tubercular agents, I: Synthesis and antituberculosis activ-
ity of 2-aryl-1,3,4-thiadiazole derivatives. Pharmazie, 56,
610-612.
[5] Mamolo, M.G., Falagiani, V., Zanpier, D., Vio, L. and
Banfi, F. (2001) Synthesis and antimycobacterial activity
of [5- (pyridin-2-yl)-1,3,4-thiadiazol-2-ylthio]acetic acid
arylidene- hydrazide derivatives. II Farmaco, 56, 587-
592. doi:10.1016/S0014-827X(01)01097-7
[6] Zou, X.J., Lai, L.H., Jin, G.Y. and Zhang, Z.X. (2002)
Synthesis, fungicidal activity, and 3D-QSAR of pyridazi-
none-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles.
Journal of Agricultural and Food Chemistry, 50,
3757-3760. doi:10.1021/jf0201677
[7] Chen, H., Li, Z. and Han, Y. (2000) Synthesis and fungi-
cidal activity against rhizoctonia solani of 2-alkyl (alkyl-
thio)-5-pyrazolyl-1,3,4-oxadiazoles (thiadiazoles). Jour-
nal of Agricultural and Food Chemistry, 48, 5312-5315.
doi:10.1021/jf991065s
[8] Clerici, F., Pocar, D., Guido, M., Loche, A., Perlini, V.
and Brufani, M. (2001) Synthesis of 2-amino-5-sulfanyl-
1,3,4-thiadiazole derivatives and evaluation of their anti-
depressant and anxiolytic activity. Journal of Medicinal
Chemistry, 44, pp. 931-936.
doi:10.1021/jm001027w
[9] Palaska, E., Sahin, G., Kelincen, P., Durlu, N.T. and
Altionax, G. (2002 ) Synthesis and anti-inflammatory ac-
tivity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,
4-thiadiazoles and 1,2,4-triazole-3-thiones. II Farmaco,
57, 101-107. doi:10.1016/S0014-827X(01)01176-4
[10] Shenone, S., Bruno, O., Ranise, A., Bondavalli, W., Fal-
cone, G., Giordano, L. and Vitelli, M. (2001) 3-Arylsul-
phonyl-5-arylamino-1,3,4-thiadiazol-2(3H) ones as anti-
inflammatory and analgesic agents. Bioorganic & Me-
dicinal Chemistry, 9, 2149-2153.
doi:10.1016/S0968-0896(01)00121-3
[11] Onko., T. Cakir, B. and Sahin, M.F. (2004) Synthesis and
antinociceptive activity of 2-[(2-Oxobenzothiazolin-3-yl)
methyl]-5-aminoalkyl/aryl-1,3,4-thiadiazole. Turkish Jour-
nal of Chemistry, 28, 461-468.
[12] Azab, M.E., El-Hag Ali, G.A.M. and Abd El-Wahab,
A.H.F. (2003) Studies on thiazolopyridines: A novel syn-
thesis of bisthiazolopyridines as promising antimicrobial
agents. Acta Pharmaceutica, 53, 213-221.
[13] Sondhi, S.M., Singh, N., Lahoti, A.M., Bajaj, K., Kumar,
A., Lozach, O. and Meijer, L. (2005) Synthesis of acrid-
inyl-thiazolino derivatives and their evaluation for anti-
nflammatory, analgesic and kinase inhibition activities.
Bioorganic & Medicinal Chemistry, 13, 4291-4299.
doi:10.1016/j.bmc.2005.04.017
[14] Mahler, G., Serra, G., Dematteis, S., Saldana, J.,
Dominguez, L. and Manta, E. (2006) Synthesis and bio-
logical evaluation of simplified mycothiazole analogues.
Bioorganic & Medicinal Chemistry Letters, 16, 1309-
1311. doi:10.1016/j.bmcl.2005.11.072
[15] Shih, M. and Ke, F. (2004) Syntheses and evaluation of
antioxidant activity of sydnonyl substituted thiazolidi-
none and thiazoline derivatives. Bioorganic & Medicinal
Chemistry Letters, 12, 4633-4643.
doi:10.1016/j.bmc.2004.06.033
[16] Godefroi, E.F. and Platje, J.Th. (1972) DL-1-(.alpha.-Me-
thylbenzyl)-2- methylimidazole-5-carboxylate esters. Syn-
thesis and pharmacological properties. Journal of Me-
dicinal Chemistry, 15, 336-337.
doi:10.1021/jm00273a035
[17] Harfenist, M., Soroko, F.E. and Mckenzie, G.M. (1978)
2-(Alkoxyaryl)-2-imidazoline monoamine oxidase in-
hibitors with antidepressant activity. Journal of Medici-
nal Chemistry, 21, 405-409.
doi:10.1021/jm00202a021
[18] Kornicka, A., Hudson, A.L. and Bednarski, P.J. (2009)
Synthesis and biological activity of some 2-imida-
zolinylhydrazone derivatives. Acta Poloniae Pharmaceu-
tica-Drug Research, 66, 523-534.
[19] Desai, N.C., Bhavsar, A.M. and Baldaniya, B.B. (2009)
Synthesis and antimicrobial activity of 5-imidazolinone
derivatives. Journal of Postgraduate Medicine, 71, 90-
94.
[20] Solankee, A., Kapadia, K., Thakor, I., Patel, J. and Lad, S.
(2004) Synthesis and Antimicrobial Activity of 1-(4´
-Trifluoro methylphenyl and- 2-phenyl-4-(benzylidene/
substituted Benzylidene/2’ furylidene/2’-thienylidene)-
imidazolin-5-ones. Asian Journal of Chemistry, 16, 917-
920.
[21] Mor, M., Bordi, F., Silva, C., Rivara, S., Zuliani, V.,
Vacodio, F., Morini, G., Barocelli, E., Ballabeni, V., Im-
picciatore, M. and Plazzi, P.V. (2000) Synthesis and bio-
logical assays of new H3-antagonists with imidazole and
imidazoline polar groups. II Farmaco, 55, 27-34.
doi:10.1016/S0014-827X(99)00115-9
[22] Giorgioni, G., Claudi, F., Ruggieri, S., Ricciutelli, M.,
Palmieri, G.F., Di-Stefano, A., Sozio, P., Cerasa, L.S.,
Chiavaroli, A., Ferrante, C., Orlando and G., Glennon,
(2010) Design, synthesis, and preliminary pharmacol-
ogical evaluation of new imidazolinones as l-DOPA
prodrugs. Bioorganic & Medicinal Chemistry Letters, 18,
1834-1843. doi:10.1016/j.bmc.2010.01.041
[23] Abunada, N.M., Hassaneen, H.M., Kandile, N.G. and
Miqdad, O.A. (2008) Synthesis and biological activity of
some new pyrazoline and pyrrolo[3,4-c]pyrazole-4,6-
dione derivatives: reaction of nitrilimines with some di-
polarophiles. Molecules, 13, 1011-1024.
doi:10.3390/molecules13041011
[24] Abunada, N.M., Hassaneen, H.M., Kandile, N.G. and
Miqdad, O.A. (2008) Synthesis and antimicrobial activity
of some new pyrazole, fused pyrazolo[3,4-d]-pyrimidine
and pyrazolo[4,3-e][1,2,4]-triazolo[1,5-c]pyrimidine de-
rivatives. Molecules, 13, 1501-1517.
doi:10.3390/molecules13071501
[25] Abunada, N.M., Hassaneen, H.M., Abu Samaha, A.M.
and Miqdad, O.A. (2009) Synthesis and antimicrobial
evaluation of some new pyrazole, pyrazoline and
chromeno [3,4-c]pyrazole derivatives. Journal of Brazil-
ian Chemical Society, 20, 975-987.
H. M. Hassaneen et al. / Natural Science 3 (2011) 199-207
Copyright © 2011 SciRes. OPEN ACCESS
207207
doi:10.1590/S0103-50532009000500024
[26] Hassaneen, H.M., Shawali, A.S., Khalil, M.S. and Ab-
dallah, T.A.A. (1993) One step synthesis of benzimi-
dazo[2,1-c] [1,2,4]triazole derivatives using hydrazonoyl
halides. Heterocycles, 36, 1775-1781.
doi:10.3987/COM-93-6344
[27] Hassaneen, H.M., Abbas, I.M., Abdelhadi, H.A., Abdal-
lah, T.A. and Algharib, M.S. (1994) Reactions of 5-oxo-
2-pyrazolin-4-thiocarboxanilides and 5-oxo-2-oxazolin-
4-thiocarboxanilides with hydrazonoyl halides. Sulfur
Letters, 17, 295-307.
[28] Hassaneen, H.M., Elwan, N.M., Abdelhadi, H.A. and
Abdallah, T.A. (1995) Reactions of thioanilides with ac-
tive chloromethylene compounds. Synthesis of 1,3-
oxathiol-2-ylidene derivatives. Sulfur Letters, 18, 121-
128.
[29] Hassaneen, H.M., Harhash, A.H.E., Abunada, N.M., Ab-
dallah, T.A. and Algharib, M.S. (1993) Cyano-(1-me-
thylbenzimidazol-2-yl)thioacetanilide in the synthesis of
2,3-dihydro-1,3,4-thiadiazole derivatives. The Journal of
Chemical Research, 194-195.
[30] Argyropoulou, E.C. and Thessalonikeos, E. (1990) Reac-
tions of nitrile oxides and nitrile imines with 4-arylidene-
2-phenyl-5(4H)-thiazolones. Justus Liebigs Annalen der
Chemie, 1097-1100. doi:10.1002/jlac.1990199001198
[31] Johnson, T.B. and Hadley, S.E. (1915) Researches on
hydantoins. XXIX. Geometrical isomerism in the hydan-
toin series. Journal of American Chemical Society, 37,
171-177. doi:10.1021/ja02270a017
[32] Wolkoff, P. (1975) A new method of preparing hydra-
zonyl halides. Canadian Journal of Chemistry, 53 , 1333-
1335. doi:10.1139/v75-183
[33] Hassaneen, H.M., Elwan, N.M., Harhash, A. and Shawali,
A.S. (1984) The regioselectivity in the formation of
pyrazolines and pyrazoles from nitrile imines. Journal of
Heterocyclic Chemistry, 21, 1013-1016.
doi:10.1002/jhet.5570210417
[34] Hassaneen, H.M., Mousa, H.A.H., Abed, N.M. and Sha-
wali, A.S. (1988) Chemistry of C-Heteroarylhydrazidoyl
halides. Synthesis and reactions of n-(p-nitrophenyl)-c-
(2-thienyl)-formohydrazidoyl halides. Heterocycles, 27,
695-706. doi:10.3987/COM-87-4381
[35] Shawali, A.S., Hassaneen, H.M. and Ibrahim, H.A. (1990)
Synthesis and cycloaddition reactions of N-aryl-2-furo-
hydrazonoyl chlorides. Archives of Pharmacal Research,
13, 126-131.
doi:10.1007/BF02857788
[36] Aylward, J.B. and Scott, F.L. (1969) Preparation and
sovolysis of N1-arylbenzohydrazonyl bromides. Journal
of Chemical Society (B), 1969, 1080-1084.
doi:10.1039/j29690001080
[37] Eweiss, N.F. and Osman, A. (1980) Synthesis of hetero-
cycles. Part II. New routes to acetylthiadiazolines and
alkylazothiazoles. Journal of Heterocyclic Chemistry, 17,
1713-1717. doi:10.1002/jhet.5570170814
[38] Shawali, A.S., Eweiss, N.F., Hassaneen, H.M. and Al-
gharib, M.S. (1975) Synthesis and rearrangement of ethyl
aryloxyglyoxalate arylhydrazones. Bulletin of the
Chemical Society of Japan, 48, 365-366.
doi:10.1246/bcsj.48.365
[39] Shawali, A.S. and Osman, A. (1971) Synthesis and reac-
tions of phenylcarbamoylarylhydrazidic chlorides. Tet-
rahedron, 27, 2517-2528.
doi:10.1016/S0040-4020(01)90753-7
[40] Shawali, A.S. and Abdelhamid, A.O. (1976) Reaction of
dimethylphenacylsulfonium bromide with N-nitro-
soacetarylamides and reactions of the products with nu-
cleophiles. Bulletin of the Chemical Society of Japan, 49,
321-324. doi:10.1246/bcsj.49.321
[41] Farag, A.M. and Algharib, M.S. (1988) Synthesis and
reactions of C-(2-thenoyl)-N-arylformahydrazidoyl bro-
mides. Organic Preparations and Procedures Interna-
tional, 20, 521-526.
doi:10.1080/00304948809356298
[42] Hassaneen, H.M., Shawali, A.S., Elwan, N.M. and
Abunada, N.M. (1992) Reaction of 1-(2-naphthoyl)
methyl-2-dimethylsulfonium bromide with N-nitroso-N-
arylacetamides and reactions of the products with some
nucleophiles. Sulfur Letters, 13, 273-285.
[43] Huisgen, R., Grashey, R., Seidel, M., Knupfer, H. and
Schmidt, R. (1962) 1,3-Dipolare Additionen, III. Um-
setzungen des Diphenylnitrilimins mit Carbonyl und
Thiocarbonyl-Verbindungen. Justus Liebigs Annalen der
Chemie, 658, 169-180. doi:10.1002/jlac.19626580115
[44] Abdelhamid, A.O. and Abdou, S.E. (1987) Reactions of
cyanothioacetamide with hydrazidoyl halides: A novel
synthesis of some hydrazidoyl sulfides and triazole de-
rivatives. Sulfur Letters, 6, 41-47.
[45] Mohareb, R.M., Sherif, S.M., Abdel-Aal, F.A.M. and
Sayed, N.I.A. (1990) One-pot synthesis of polyfunction-
ally substituted 2,3-dihydrothiazoles and thiazolidinones.
Justus Liebigs Annalen der Chemie, 1143-1146.