Applied Mathematics
Vol.06 No.06(2015), Article ID:56854,6 pages
10.4236/am.2015.66085
Study of the Convergence of the Increments of Gaussian Process
Abdelkader Bahram1, Shaban A. El-Shehawy2
1Department of Mathematics, Djillali Liabes University, Sidi Bel Abbès, Algeria
2Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
Email: menaouar_1926@yahoo.fr, shshehawy64@yahoo.com
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Received 29 April 2015; accepted 30 May 2015; published 2 June 2015
ABSTRACT
Let be a Gaussian process with stationary increments
. Let
be a nondecreasing function of t with
. This paper aims to study the almost sure behaviour of
where
with and
is an increasing sequence diverging to
.
Keywords:
Wiener Process, Gaussian Process, Law of the Iterated Logarithm, Regularly Varying Function
1. Introduction
Let be a standard Wiener process. Suppose that
is a nondecreasing function of t such that
with
is nonincreasing and
is an increasing sequence diverging to
. In [1] the following results are established.
i) If, then
(1)
and
(2)
where and
.
ii) If, then
,
where,
and
.
In this paper the limit theorems on increments of a Wiener process due to [1] are developed to the case of a Gaussian process. This can be considered also as an extension of the results to Gaussian processes obtained in [2] . Throughout this paper, we shall always assume the following statements: Let be an almost
surely continuous Gaussian process with,
and
, where
is a function of
. Further we assume that
,
, is a nondecreasing continuous concave, regularly varying function at exponent
at
(e.g., if
is a standard Wiener pro- cess, then
).
Let be a nondecreasing function of t with
. For large t, let us denote
where and
is an increasing function of
.
We define two continuous parameter processes and
by
and
.
2. Main Results
In this section we provide the following two theorems which are the main results. We concern here with the development of the limit theorems of a Wiener process to the case of a Gaussian process under consideration the above given assumptions.
Theorem 1. Let be a nondecreasing function of t where
with the nonincreasing function
and let
be any increasing sequence diverging to
such that
, (3)
then
(4)
and
(5)
where.
We note that for large k in case of the Wiener process. It is interesting to compare (1) and (2) with (4) and (5) respectively.
Theorem 2. Let be a nondecreasing function of
where
with the nonincreasing function
and let
be an increasing sequence diverging to
such that
, (6)
then
(7)
and
(8)
where and
.
3. Proofs
In order to prove Theorems 1 and 2, we need to give the following lemmas.
Lemma 1. (See [3] ). For any small there exists a positive
depending on
such that for all
,
where m is any large number and is defined above.
Lemma 2. (See [4] ) Let and
be centered Gaussian processes such that
for all
and
for all
. Then for any real number u
.
Proof of Theorem 1. Firstly, we prove that
(9)
For any with the condition (3), we define an increasing sequence
by
.
For instance, let for some
,
.
The condition (3) is satisfied, and for large k, and
. By Lemma 1, we have, for any small
,
(10)
where k is large enough and is a constant. By the definition of
,
.
We shall follow the similar proof process as in [5] . Set
.
Since is an increasing sequence, the fact that
implies
. Consider the odd subse-
quence of
and define the sequence of events
in the following form
.
By (10), for large k we have
where is a constant. From the fact
, it is clear that
.
Since, we get
. Also,
. (11)
Setting
and
,
we have
.
Let
,
and
.
Then, by (11) and the concavity of we find that
This implies that. Using Lemma 2, we obtain
where. It follows from the Borel-Cantelli lemma that
Also, the same result for the even subsequence of
is easily obtained. Therefore we have (9).
To finish the proof of Theorem 1, we need to prove
(12)
The proof of (12) is similar to the provided proof in [1] . Thus the proof of Theorem 1 is complete.
Proof of Theorem 2. Firstly, we prove that
(13)
According to Lemma 1, we have
provided k is large enough, where and
.
From the definition of, it follows that
.
Thus, (13) is immediate by using Borel Cantelli lemma.
To finish the proof of Theorem 2 we need to prove
(14)
Let
.
Using the well known probability inequality
(see [6] ), one can find positive constants C and K such that, for all,
where and
. By the definition of
, we have
.
The condition (6) implies that there exists such that
for all
. So, using Lemma 2 and the concavity of
, we obtain
,
where and Borel-Cantelli lemma implies (14). If
, then Theorem 2 is immediate. Thus the proof of Theorem 2 is complete.
4. Some Results for Partial Sums of Stationary Gaussian Sequence
In this section we obtain similar results as Theorems 1 and 2 for the case of partial sums of a stationary Gaussian sequence. Let be a stationary Gaussian sequence with
,
,
and
for all
We define
with
and set
.
Assume that can be extended to a continuous function
with
which is nondecreasing and regularly varying with exponent
at
. Suppose that
is a nondecreasing sequence of positive integers such that
. For large n, we define
,
where and
is an increasing function of n and also we define discrete time parameter processes by
and
,
respectively, where is an increasing sequence of positive integers diverging to
. By the same way as in the proofs of Theorems 1 and 2, we obtain the following results.
Theorem 3. Under the above statements of,
and
, for
we have the following:
i) If, then
ii) If, then
where
.
Example. Let be a fractional Brownian motion with the covariance function
. Then
.
Define random variables
,
and.
Then
and is a stationary Gaussian sequence with
,
and
for all
. So we have Theorem 3.
In particular if, then
is an i.i.d. Gaussian sequence with
and
.
5. Conclusion
In this paper, we developed some limit theorems on increments of a Wiener process to the case of a Gaussian process. Moreover, we obtained similar results of these limit theorems for the case of partial sums of a stationary Gaussian sequence. Some obtained results can be considered as extensions of some previous given results to Gaussian processes.
References
- Bahram, A. (2014) Convergence of the Increments of a Wiener Process. Acta Mathematica Universitatis Comenianae, 83, 113-118.
- Hwang, K.S., Choi, Y.K. and Jung, J.S. (1997) On Superior Limits for the Increments of Gaussian Processes. Statistics and Probability Letters, 35, 289-296. http://dx.doi.org/10.1016/S0167-7152(97)00025-4
- Choi, Y.K. (1991) Erdös-Réyi Type Laws Applied to Gaussian Process. Journal of Mathematics of Kyoto University, 31, 191-217.
- Slepian, D. (1962) The One-Sided Barrier Problem for Gaussian Noise. Bell System Technical Journal, 41, 463-501. http://dx.doi.org/10.1002/j.1538-7305.1962.tb02419.x
- Vasudeva, R. and Savitha, S. (1993) On the Increments of Weiner Process―A Look through Subsequences. Stochastic Processes and Their Applications, 47, 153-158. http://dx.doi.org/10.1016/0304-4149(93)90101-9
- Fernique, X. (1975) Evaluations of Processus Gaussian Composes. Probability in Banach Spaces. Lecture Notes in Mathematics, 526, 67-83.