
M. A. M. Kadry, S. A. M. Amer / Advances in Bioscience and Biotechnology 4 (2013) 974-978 977
tissues than S. sthenodactylus. Within each species, total
lipids and proteins were significantly higher in liver (P <
0.01, P < 0.001) tissues than in muscle tissues.
4. CONCLUSION
In conclusion, S. petrii displayed higher physiological
performance and activity than S. sthenodactylus, while
isoenzyme expression was higher in the first species than
in the second. The accumulation of total lipids and pro-
teins was also significantly higher in the first species
than in the second. Data analysis in the present research
project does not support what is concluded in the study
of Amer [6] for both species and within S. petrii. We
therefore can affirm that the identification of S. petrii is
incorrect in the study by Amer [6], while the research
results point to the identity of other haplotypes of S.
sthenodactylus than that of S. petrii.
5. ACKNOWLEDGMENTS
We are grateful to Dr. Shawkat Ahmed at Ain Shams University of
Egypt for his technical support in conducting the practical part of
isoenzyme assay in this work.
REFERENCES
[1] Ali, R.A.M. (2012) Genetic variation among nine Egyp-
tian gecko species (Reptilia: Gekkonidae) based on RAPD-
PCR. Journal of Life Science, 9, 154-162.
[2] Baha El Din, M. (1997) A new species of tarentola
(Squamata: Gekkonidae) from the western desert of
Egypt. African Journal of Herpetology, 46, 30-35.
http://dx.doi.org/10.1080/21564574.1997.9649973
[3] Saleh, M.A. (1997) Amphibians and reptiles of Egypt.
[Cairo]: Egyptian Environmental Affairs Agency.
[4] Castiglia, R. (2004) First chromosomal analysis for the
genus Lygodactylus (Gray, 1864): The karyotype of L.
picturatus (Squamata, Gekkonidae, Gekkoninae). African
Journal of Herpetology, 53, 95-97.
http://dx.doi.org/10.1080/21564574.2004.9635502
[5] Kawai, A., Ishijima, J., Nishida, C., Kosaka, A., Ota, H.,
Kohno, S. and Matsuda, Y. (2009) The ZW sex chromo-
somes of Gekkohokouensis (Gekkonidae, Squamata) re-
present highly conserved homology with those of avian
species. Chromosoma, 118, 43-51.
http://dx.doi.org/10.1007/s00412-008-0176-2
[6] Amer, S.A.M. (1999) Morphometric, genetic and meta-
bolic variations in relation to the taxonomic separation of
gekkonids in Egypt (Gekkonidae: Reptilia). PhD Thesis,
Cairo University, Egypt.
[7] Macey, R., Ananjeva, B., Wang, Y. and Papenfuss, J.
(2000) Phylogenetic relationships among Asian gekkonid
lizards formerly of the genus Cyrtodactylus based on
cladistic analyses of allozymic data: Monophyly of Cyr-
topodion and Mediodactylus. Journal of Herpetology, 34,
258-265. http://dx.doi.org/10.2307/1565422
[8] Qin, X., Liang, Y. and Huang, X. (2006) Isozymes analy-
sis on different tissues from three different populations of
Gekko gecko. Guangxi Science, 13, 310-316.
[9] Carranza, S., Arnold, N., Mateo, A. and Geniez, P. (2002)
Relationships and evolution of the North African geckos,
Geckonia and Tarentola (Reptilia: Gekkonidae), based on
mitochondrial and nuclear DNA sequences. Molecular
Phylogenetics and Evolution, 23, 244-256.
http://dx.doi.org/10.1016/S1055-7903(02)00024-6
[10] Han, D., Zhou, K. and Bauer, M. (2004) Phylogenetic
relationships among gekkotan lizards inferred from C-
mos nuclear DNA sequences and anew classification of
the Gekkota. Biological Journal of Linnean Society, 83,
353-368.
h tt p: //d x. doi .org/10 .1111/j .1095-8312.2004.00393.x
[11] Vences, M., Wanke, S., Vieites, R., Branch, R., Glaw, F.
and Meyer, A. (2004) Natural colonization or introduc-
tion? Phylogeographical relationships and morphological
differentiation of house geckos (Hemidactylus) from Ma-
dagascar. Biological Journal of Linnean Society, 83, 115-
130. h tt p:// dx.d oi. org/1 0. 1111/j. 1095-8312.2004.00370.x
[12] Jesus, J., Brehm, A. and Harris, J. (2005) Phylogenetic
relationships of Hemidactylus geckos from the Gulf of
Guinea islands: Patterns of natural colonizations and an-
thropogenic introductions estimated from mitochondrial
and nuclear DNA sequences. Molecular Phylogenetics
and Evolution, 34, 480-485.
http://dx.doi.org/10.1016/j.ympev.2004.11.006
[13] Rocha, S., Carretero, M. and Harris, J. (2005) Diversity
and phylogenetic relationships of Hemidactylus geckos
from the Comoro Islands. Molecular Phylogenetics and
Evolution, 35, 292-299.
http://dx.doi.org/10.1016/j.ympev.2004.11.023
[14] Qin, X., Liang, Y., Huang, X. and Pang, G. (2005) RAPD
analysis on genetic divergence and phylogenesis of
Gekko gecko from different areas. Chinese Journal of
Zoology, 40, 14.
[15] Carranza, S. and Arnold, N. (2006) Systematics, bio-
geography, and evolution of Hemidactylus geckos (Rep-
tilia: Gekkonidae) elucidated using mitochondrial DNA
sequences. Molecular Phylogenetics and Evolution, 38,
531-545. http://dx.doi.org/10.1016/j.ympev.2005.07.012
[16] Bansal, R. and Karanth, P. (2010) Molecular phylogeny
of Hemidactylus geckos (Squamata: Gekkonidae) of the
Indian subcontinent reveals a unique Indian radiation and
an Indian origin of Asian house geckos. Molecular Phy-
logenetics and Evolution, 57, 459-465.
http://dx.doi.org/10.1016/j.ympev.2010.06.008
[17] Rato, C., Carranza, S., Pereira, A., Carretero, M. and
Harris, J. (2010) Conflicting patterns of nucleotide diver-
sity between mtDNA and nDNA in the Moorish gecko,
Tarentola mauritanica. Molecular Phylogenetics and
Evolution, 56, 962-971.
http://dx.doi.org/10.1016/j.ympev.2010.04.033
[18] Busais, S. and Joger, U. (2011) Molecular phylogeny of
the gecko genus Hemidactylus Oken, 1817 on the main-
land of Yemen (Reptilia: Gekkonidae). Zoology in the
Middle East, 53, 25-34.
http://dx.doi.org/10.1080/09397140.2011.10648859
Copyright © 2013 SciRes. OPEN ACCESS