
W. S. ZHANG, Y. Y. DAI
Copyright © 2013 SciRes. AJCM
26
4. Conclusions
A new wave simulation technique for the elastic wave
equation in the frequency domain is investigated. It is
based on the no overlapping domain decomposition
method. The computational difference schemes and the
corresponding algorithm of domain decomposition are
presented. The numerical computations both for a ho-
mogeneous model and a three-layered model show the
effectiveness of our proposed method. This method can
be used in the full-waveform inversion. It can sometimes
reduce the computational complexity.
5. Acknowledgements
This research is supported by the State Key project with
grant number 2010 CB731505 and the Foundation of Na-
tional Center for Mathematics and Interdisciplinary Sci-
ences, CAS. The computations are implemented in the
State Key Lab. of Sci. and Eng. Computing (LSEC).
REFERENCES
[1] A. Bayliss, C. I. Goldstein and E. Turkel, “The Numerical
Solution of the Helmholtz Equation for Wave Propaga-
tion Problmes in Underwater Acoustics,” Computers and
Mathematics with Applications, Vol. 11, No. 7-8, 1985,
pp. 655-665. doi:10.1016/0898-1221(85)90162-2
[2] R. E. Plexxis, “A Helmholtz Iterative Solver for 3D Seis-
mic-imaging Problems,” Geophysics, Vol. 72, No. 5 2007,
pp. SM185-SM197. doi:10.1190/1.2738849
[3] F. Ihlenburg and I. Babuska, “Finite Element Solution of
the Helmholtz Equation with High Wave Number. Part I:
The H-version of the FE M,” Computers and Mathematics
with Applications, Vol. 30, No. 9, 1995, pp. 9-37.
doi:10.1016/0898-1221(95)00144-N
[4] F. Ihlenburg and I. Babuska, “Finite Element Solution of
the Helmholtz Equation with High Wave Number. Part II:
The Hp-version of the FEM,” SIAM Journal on Numeri-
cal Analysis, Vol. 34, No. 1, 1997, pp. 315-358.
doi:10.1137/S0036142994272337
[5] A. Bayliss, C. I. Goldstein and E. Turkel, “An Iterative
Method for the Helmholtz Equation,” Journal of Compu-
tational Physics, Vol. 49, No. 3, 1983, pp. 443-457.
doi:10.1016/0021-9991(83)90139-0
[6] Y. A. Erlangga, “Advances in Iterative Methods and Pre-
Conditioners for the Helmholtz Equation,” Archives of
Computational Methods in Engineering, Vol. 15, No. 1
2008, pp. 37-66. doi:10.1007/s11831-007-9013-7
[7] T. F. Chan and T. P. Mathew, “Domain Decomposition
Algorithms,” Acta Numerica, Vol. 3, 1994, pp. 61-143.
doi:10.1017/S0962492900002427
[8] A. Tosseli and O. Widlund, “Domain Decomposition
Methods-Algorithms and Theory,” Springer, Berlin,
2005.
[9] J. Xu, “Iterative Methods by Space Decomposition and
Subspace Correction,” SIAM Review, Vol. 34, No. 4,
1992, pp. 581-613. doi:10.1137/1034116
[10] J. Xu and J. Zou, “Some Nonoverlapping Domain De-
composition Methods,” SIAM Review, Vol. 40, No. 4,
1998, pp. 857-914. doi:10.1137/S0036144596306800
[11] C. Cerjan, D. Kosloff, R. Kosloff and M. Reshef, “A
Non-reflecting Boundary Condition for Discrete Acoustic
and Elastic Wave Equations,” Geophysics, Vol. 50, No. 4,
1985, pp. 705-708. doi:10.1190/1.1441945
[12] R. Clayton and B. Engquist, “Absorbing Boundary Con-
ditions for Acoustic and Elastic Wave Equations,” Bulle-
tin of the Seismological Society of America, Vol. 67, No.
6, 1977, pp. 1529-1540.
[13] J. P. Berenger, “A Perfectly Matched Layer for Absorb-
ing of Electromagnetic Waves,” Journal of Computa-
tional Physics, Vol. 114, No. 2, 1994, pp. 185-200.
doi:10.1006/jcph.1994.1159
[14] S. Kim, “Domain Decomposition Iterative Procedures for
Solving Scalar Waves in the Frequency Domain”, Nu-
merische Mathematik, Vol. 79, No. 2, 1998, pp. 231-259.
doi:10.1007/s002110050339
[15] S. Larsson, “A Domain Decomposition Method for the
Helmholtz Equation in a Multilayer Domain,” SIAM
Journal on Scientific Computing, Vol. 20, No. 5, 1999, pp.
1713-1731. doi:10.1137/S1064827597325323
[16] F. Magoulès, F. X. Roux and S. Salmon, “Optimal Dis-
crete Transmission Conditions for a Nonoverlapping
Domain Decomposition Method for the Helmholtz Equa-
tion,” SIAM Journal on Scientific Compting, Vol. 25, No.
5, 2004, pp. 1497-1515.
doi:10.1137/S1064827502415351
[17] Y. A. Erlangga, C. Vuik and C. W. Oosterlee, “On a
Class of Preconditioners for Solving the Helmholtz Equa-
tion,” Applied Numerical Mathematics, Vol. 50, No. 3-4,
2003, pp. 409-425. doi:10.1016/j.apnum.2004.01.009
[18] T. Airaksinen, E. Heikkola, A. Pennanen and J. Toivanen,
“An Algebraic Multigrid based Shifted-Laplacian P[e-
conditioner for the Helmholtz Equation,” Journal of
Computational Physics, Vol. 226, No. 1, 2007, pp.
1196-1210.doi:10.1016/j.jcp.2007.05.013