
O. A. Oke, J. R. Wang / Open Journal of Ecology 3 (2013) 3 59-369
368
[8] Carter, K.K. (1996) Provenance tests as indicators of
growth response to climate change in 10 north temperate
tree species. Canadian Journal of Forest Research, 26,
1089-1095. doi:10.1139/x26-120
[9] Marchin, R.M., Sage, E.L. and Ward, J.K. (2008) Popula-
tion-level variation of Fraxinus americana (white ash) is
influenced by precipitation differences across the native
range. Tree Physiology, 28, 151-159.
doi:10.1093/treephys/28.1.151
[10] Morgenstern, E.K. (1996) Geographic variation in forest
trees: Genetic basis and application of knowledge in sil-
viculture. UBC Press, Vancouver, BC.
[11] Neilson, R.P., Pitelka, L.F., Solomon, A.M., Nathan, R.,
Midgley, G.F., Fragoso, J.M.V., Lischke, H. and Thomp-
son, K. (2005) Forescasting regional to global plant mi-
gration in response to climate change. Bioscience, 55,
749-759.
doi:10.1641/0006-3568(2005)055[0749:FRTGPM]2.0.CO;2
[12] Parker, W.C., Colombo, S.J., Cherry, M.L., Flannigan,
M.D., Greifenhagen, S., McAlpine, R.S., Papadopol, C.
and Scarr, T. (2000) Third millenium forestry: What cli-
mate change might mean to forests and forest manage-
ment in Ontario. The Forestry Chronicle, 76, 445-463.
[13] Rehfeldt, G.E., Tchebakova, N.M., Parfenova, Y.I, Wy-
koff, W.R., Kuzmina, N.A and Milyutin, L.I. (2002) Intra-
specific response to climate in Pinus sylvestris. Global
Change Biology, 8, 912-929.
doi:10.1046/j.1365-2486.2002.00516.x
[14] Rehfeldt, G.E., Tchebakova N.M., and Parfenova, E.I.
(2004) Genetic responses to climate and climate change
in conifers of the temperate and boreal forests. Advanced
Generation Breeding, 1, 113-130.
[15] Langlet, O. (1971) Two hundred years of genecology. Ta-
xon, 20, 653-722. doi:10.2307/1218596
[16] Matyas, C. (1994) Modeling climate change effects with
provenance test data. Tree Physiology, 14, 797-804.
[17] Rehfeldt, G.E., Ying, C.C., Spittlehouse, D.L. and Hamil-
ton, D.A. (1999) Genetic responses to climate change in
Pinus contorta: Niche breadth, climate change, and refo-
restation. Ecological Engineering, 69, 379-407.
[18] Rehfeldt, G.E., Tchebakova, N.M. and Barnhardt, L.K.
(1999) Efficacy of climate transfer functions: introduction
of Eurasian populations of Larix into Alberta. Canadian
Journal of Forest Research, 29, 1660-1668.
doi:10.1139/x99-143
[19] Rehfeldt, G.E., Tchebakova, N.M., Milyutin, L.I., Parfe-
nova, Y.I., W ykoff, R.A. and Kuzmina, N.A. (2003). As-
sessing population responses to climate in Pinus sylves-
tris and Larix spp. of Eurasia with climate-transfer mo-
dels. Eurasian Journal of Forest Research, 6, 83-98.
[20] Thomson, A.M. and Parker, W.H. (2008) Boreal forest
provenance tests used to predict optimal growth and re-
sponse to climate change. Canadian Journal of Forest
Research, 38, 157-170. doi:10.1139/X07-122
[21] Wang, T., O’Neill G.A. and Aitken, S.N. (2010) Integrat-
ing environmental and genetic effects to predict responses
of tree populations to climate. Ecological Applications,
20, 153-163. doi:10.1890/08-2257.1
[22] Laura P.L., Andrew P.R., Gerald E.R., John D.M. and
Nicholas L.C. (2012) Height-growth response to climatic
changes differs among populations of Douglas-fir: A no-
vel analysis of historic data. Ecological Applications, 22,
154-165. doi:10.1890/11-0150.1
[23] Safford, L., Bjorkbom, J.C. and Zasada, J.C. (1990)
Betula papyrifera Marsh. Paper birch. In: Burns, R.M.
and Honkala, B.H. Eds., Silvics of North America, Vol. 2,
Hardwoods, Agricultural Handbook 654. USDA Forest
Service, Washington DC, 604-611.
[24] Peterson, E.B., Peterson, N. M., Simard, S. W. and Wang,
J. R. (1997) Paper birch managers’ handbook for British
Columbia. FRDA II, Victoria, BC.
[25] Simard, S.W. (1996) Ecological and silvicultural charac-
teristics of paper birch in the southern interior of British
Columbia. Ecology and Management of British Columbia
Hardwoods: Workshop Proceedings, Richmond, BC, 1-2
December 1993, 157-165.
[26] Wang, J.R., Hawkins, C.D.B. and Letchford, T. (1998)
Relative growth rate and biomass allocation of paper
birch (Betula papyrifera) populations under different soil
moisture and nutrient regimes. Canadian Journal of Fo-
rest Research, 28, 44-55. doi:10.1139/x97-191
[27] Wang, J.R., Hawkins, C.D.B. and Letchford, T. (1998)
Photosynthesis, water and nitrogen use efficiencies of
four paper birch (Betula papyrifera) populations grown
under different soil moisture and nutrient regimes. Forest
Ecology and Management, 112, 233-244.
doi:10.1016/S0378-1127(98)00407-1
[28] Simpson, D.G., Binder, W.D. and L’Hirondelle, S. (2000)
Paper birch genecology and physiology: Spring dor-
mancy release and fall cold acclimation. Journal of Sus-
tainable Forestry, 10, 191-198.
[29] Benowicz, A., Guy, R., Carlson, M.R. and El-Kassaby,
Y.A. (2000) Genetic variation among paper birch (Betula
papyrifera. Marsh.) populations in germination, frost har-
diness, gas exchange and growth. Silvae Genetica, 50,
7-13.
[30] Benowicz A., Guy R.D., Carlson M.R. and El-Kassaby
Y.A. (2001) Genetic variation among paper birch (Betula
papyrifera Marsh.) populations in germination, frost har-
diness, gas exchange and growth. Silvae Genetica, 50,
7-13.
[31] Downs, R. and Bevington, J.M. (1981) Effect of tem-
perature and photoperiod on growth and dormancy of
Betula papyrifera. American Journal of Botany, 68, 795-
800. doi:10.2307/2443185
[32] Bevington, J. (1986). Geographic differences in the seed
germination of paper birch (Betula papyrifera). American
Journal of Botany, 73, 564-573. doi:10.2307/2444262
[33] McWilliams, E.L., Landers, R.Q. and Mahlstede, J.P.
(1968) Variation in seed weight and germination in popu-
lations of Amaranthus retroflexus L. Ecology, 49, 290-
296. doi:10.2307/1934458
[34] Nelson, J.R., Harris, G.A. and Goebel, C.J. (1970) Ge-
netic vs. environmentally induced variation in medusa-
head (Taeniatherum asperum [Simokai] nevski). Ecology,
51, 526-529. doi:10.2307/1935391
Copyright © 2013 SciRes. OPEN ACCESS