Advances in Linear Algebra & Matrix Theory
Vol.04 No.04(2014), Article ID:51423,3 pages
10.4236/alamt.2014.44017
The Bounds for Eigenvalues of Normalized Laplacian Matrices and Signless Laplacian Matrices
Serife Büyükköse1, Sehri Gülçiçek Eski2
1Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey
2Institue of Science, Ahi Evran University, Kırşehir, Turkey
Email: serifebuyukkose@gmail.com, gulcicekeski@gmail.com
Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Received 8 September 2014; revised 6 October 2014; accepted 5 November 2014
ABSTRACT
In this paper, we found the bounds of the extreme eigenvalues of normalized Laplacian matrices and signless Laplacian matrices by using their traces. In addition, we found the bounds for k-th eigenvalues of normalized Laplacian matrix and signless Laplacian matrix.
Keywords:
Normalized Laplacian Matrix, Signless Laplacian Matrix, Bounds of Eigenvalue
1. Introduction
Let
be a simple graph with the vertex set
and edge set of E. For
, the degree of
, the set of neighbours of
are denoted by
and
, respectively. If
and
are adjacent, we denote
of short use
.
The adjacency matrix, Laplacian matrix and diagonal matrix of vertex degree of a
graph are denoted by
,
,
, respectively. Clearly
The normalized Laplacian matrix of G is defined as
i.e.,
where
The signless Laplacian matrix of G is defined as
i.e.,
where
Since
normalized Laplacian matrix and
signless Laplacian matrix are real symetric matrices, their eigenvalues are real. We denote the eigenvalues of
and
by
and
respectively.
Now we give some bounds for normalized Laplacian matrix and signless Laplacian matrix.
1. Oliveira and de Lima’s bound [1] : For a simple connected graph G with n vertices and m edges,
(1)
where.
2. Another Oliveira and de Lima’s bound [1] :
(2)
where.
3. Li, Liu et al. bound’s [2] [3] :
(3)
4. Rojo and Soto’s bound [4] : If
is the largest eigenvalue of
then
(4)
where the minimum is taken over all pairs,
.
In this paper, we found extreme eigenvalues of normalized Laplacian matrix and signless Laplacian matrix of a G graph with using theirs traces.
To obtain bounds for eigenvalues of
and
we need the followings lemmas and theorems.
Lemma 1. Let W and
be nonzero column vectors,
,
,
and
is an identity matrix. Let
. Then,
Theorem 1 [5] . Let A be a
complex matrix. Conjugate transpose of A denoted by
. Let
whose eigenvalues are
Then
and
where
and
2. Main Results for Normalized Laplacian Matrix
Theorem 2. Let G be a simple graph and
be a normalized Laplacian matrix of G. If the eigenvalues of
are
, then
(5)
(6)
(7)
Proof. Clearly
and
Since
real symmetric matrix, we found the result from Theorem 1.
Example 1. Let
with
and
3. Main Results for Signless Laplacian Matrix
Theorem 3. Let G be a simple graph and
be a signless Laplacian matrix of G. If the eigenvalues of
are
, then
(8)
(9)
(10)
Proof. Clearly
and
Since
was real symmetric matrix, we found the result from Theorem 1.
Example 2. Let
with
and
Cite this paper
SerifeBüyükköse,Sehri GülçiçekEski, (2014) The Bounds for Eigenvalues of Normalized Laplacian Matrices and Signless Laplacian Matrices. Advances in Linear Algebra & Matrix Theory,04,201-204. doi: 10.4236/alamt.2014.44017
References
- 1. Oliveira, C.S., De Lima, L.S., De Abreu, N.M.M. and Hansen, P. (2010) Bound on the Index of the Signless Laplacian of a Graph. Discrete Applied Mathematics, 158, 355-360.
http://dx.doi.org/10.1016/j.dam.2009.06.023 - 2. Li, J. and Pan, Y. (2004) Upper Bounds for the Laplacian Graph Eigenvalues. Acta Mathematica Sinica, English Series, 20, 803-806.
http://dx.doi.org/10.1007/s10114-004-0332-4 - 3. Liu, H., Lu, M. and Tian, F. (2004) On the Laplacian Spectral Radius of a Graph. Linear Algebra and Its Applications, 376, 135-141.
http://dx.doi.org/10.1016/j.laa.2003.06.007 - 4. Rojo, O. and Soto, R.L. (2013) A New Upper Bound on the Largest Normalized Laplacian Eigenvals. Operators and Matrices, 7, 323-332.
http://dx.doi.org/10.7153/oam-07-19 - 5. Wolkowich, H. and Styan, G.P.H. (1980) Bounds for Eigenvalues Using Traces of Matrice. Linear Algebra and Its Applications, 29, 471-506.
http://dx.doi.org/10.1016/0024-3795(80)90258-X