TITLE:
Risk Prediction Model for Hypertensive Disorders of Pregnancy Based on Routine Laboratory Indicators and Risk Factors: A Retrospective Analysis
AUTHORS:
Yiqv Zeng, Yu Cai
KEYWORDS:
Hypertensive Disorders of Pregnancy, Nomogram, Laboratory Indicators, Risk Factors
JOURNAL NAME:
Open Journal of Obstetrics and Gynecology,
Vol.14 No.9,
August
29,
2024
ABSTRACT: Background: Hypertensive disorder of pregnancy (HDP) is a group of diseases in which pregnancy and elevated blood pressure coexist. There is still a lack of reliable clinical tools to predict the incidence of HDP. The purpose of this study was to establish and validate a nomogram prediction model for assessing the risk of HDP in pregnant women based on laboratory indicators and HDP risk factors. Method: A total of 307 pregnant women who were hospitalized in the obstetrics and gynecology department of our hospital were included in this study, and were randomly divided into a training cohort and validation cohort at a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors for the development of HDP on laboratory indicators as well as risk factors for HDP in the training cohort of patients. The results of the multivariate regression model were visualized by forest plots. A nomogram was constructed based on the results of multivariate logistic regression to predict the risk of HDP in pregnant women. The validity of the risk prediction model was evaluated by the area under the receiver operating characteristic curve (AUC), the consistency index (C-index), the calibration curve and the decision curve analysis (DCA). Results: BMI ≥ 25 Kg/m2, total cholesterol in early pregnancy, uric acid and proteinuria in late pregnancy were independent risk factors for HDP. The AUC and C-index of the nomogram constructed by the above four factors were both 0.848. The calibration curve is closely fitted with the ideal diagonal, showing a good consistency between the nomogram prediction and the actual observation of HDP. The DCA has demonstrated the great clinical utility of nomogram. Internal verification proves the reliability of the predicted nomograms. Conclusion: The BTUP nomogram model based on laboratory indicators and risk factors proposed in this study showed good predictive value for the risk assessment of HDP. It is expected to provide evidence for clinical prediction of the risk of HDP in pregnant women.