[1]
|
Vivero, M., Kraft, S. and Barletta, J.A. (2013) Risk Stratification of Follicular Variant of Papillary Thyroid Carcinoma. Thyroid, 23, 273-279. https://doi.org/10.1089/thy.2012.0369
|
[2]
|
Baloch, Z.W., Asa, S.L., Barletta, J.A., Ghossein, R.A., Juhlin, C.C., Jung, C.K., et al. (2022) Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocrine Pathology, 33, 27-63. https://doi.org/10.1007/s12022-022-09707-3
|
[3]
|
Vuong, H.G., Duong, U.N.P., Altibi, A.M.A., Ngo, H.T.T., Pham, T.Q., Tran, H.M., et al. (2017) A Meta-Analysis of Prognostic Roles of Molecular Markers in Papillary Thyroid Carcinoma. Endocrine Connections, 6, R8-R17. https://doi.org/10.1530/ec-17-0010
|
[4]
|
Vuong, H.G., Altibi, A.M.A., Abdelhamid, A.H., Ngoc, P.U.D., Quan, V.D., Tantawi, M.Y., et al. (2016) The Changing Characteristics and Molecular Profiles of Papillary Thyroid Carcinoma over Time: A Systematic Review. Oncotarget, 8, 10637-10649. https://doi.org/10.18632/oncotarget.12885
|
[5]
|
Wei, X., Wang, X., Xiong, J., Li, C., Liao, Y., Zhu, Y., et al. (2022) Risk and Prognostic Factors for BRAFV600E Mutations in Papillary Thyroid Carcinoma. BioMed Research International, 2022, Article ID: 9959649. https://doi.org/10.1155/2022/9959649
|
[6]
|
Xu, H. (2015) The Role of BRAF in the Pathogenesis of Thyroid Carcinoma. Frontiers in Bioscience, 20, 1068-1078. https://doi.org/10.2741/4359
|
[7]
|
Sancisi, V., Nicoli, D., Ragazzi, M., Piana, S. and Ciarrocchi, A. (2012) BRAFV600E Mutation Does Not Mean Distant Metastasis in Thyroid Papillary Carcinomas. The Journal of Clinical Endocrinology & Metabolism, 97, E1745-E1749. https://doi.org/10.1210/jc.2012-1526
|
[8]
|
Lai, H., Hang, J., Kuo, P., Kuo, C., Yao, S., Chen, J., et al. (2024) BRAF V600E Mutation Lacks Association with Poorer Clinical Prognosis in Papillary Thyroid Carcinoma. Annals of Surgical Oncology, 31, 3495-3501. https://doi.org/10.1245/s10434-024-14935-4
|
[9]
|
Ye, Z., Xia, X., Xu, P., Liu, W., Wang, S., Fan, Y., et al. (2022) The Prognostic Implication of the BRAF V600E Mutation in Papillary Thyroid Cancer in a Chinese Population. International Journal of Endocrinology, 2022, Article ID: 6562149. https://doi.org/10.1155/2022/6562149
|
[10]
|
Zhang, Q., Liu, S., Zhang, Q., Guan, Y., Chen, Q. and Zhu, Q. (2016) Meta-Analyses of Association between BRAFV600E Mutation and Clinicopathological Features of Papillary Thyroid Carcinoma. Cellular Physiology and Biochemistry, 38, 763-776. https://doi.org/10.1159/000443032
|
[11]
|
Harahap, A.S., Subekti, I., Panigoro, S.S., et al. (2023) Profile of BRAFV600E, BRAFK601E, NRAS, HRAS, and KRAS Mutational Status, and Clinicopathological Characteristics of Papillary Thyroid Carcinoma in Indonesian National Referral Hospital. The Application of Clinical Genetics, 16, 99-110. https://doi.org/10.2147/tacg.s412364
|
[12]
|
Nechifor-Boilă, A., Zahan, A., Bănescu, C., Moldovan, V., Piciu, D., Voidăzan, S., et al. (2023) Impact of BRAFV600E Mutation on Event-Free Survival in Patients with Papillary Thyroid Carcinoma: A Retrospective Study in a Romanian Population. Cancers, 15, Article No. 4053. https://doi.org/10.3390/cancers15164053
|
[13]
|
Du, J., Yang, Q., Sun, Y., Shi, P., Xu, H., Chen, X., et al. (2023) Risk Factors for Central Lymph Node Metastasis in Patients with Papillary Thyroid Carcinoma: A Retrospective Study. Frontiers in Endocrinology, 14, Article ID: 1288527. https://doi.org/10.3389/fendo.2023.1288527
|
[14]
|
Janicki, L., Patel, A., Jendrzejewski, J. and Hellmann, A. (2023) Prevalence and Impact of BRAF Mutation in Patients with Concomitant Papillary Thyroid Carcinoma and Hashimoto’s Thyroiditis: A Systematic Review with Meta-Analysis. Frontiers in Endocrinology, 14, Article ID: 1273498. https://doi.org/10.3389/fendo.2023.1273498
|
[15]
|
Cao, J., Chen, B., Zhu, X., Sun, Y., Li, X., Zhang, W., et al. (2023) BRAF V600E Mutation in Papillary Thyroid Microcarcinoma: Is It a Predictor for the Prognosis of Patients with Intermediate to High Recurrence Risk? Endocrine, 84, 160-170. https://doi.org/10.1007/s12020-023-03564-8
|
[16]
|
Park, J., An, S., Kim, K., Bae, J.S. and Kim, J.S. (2023) BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk. Cancers, 15, Article No. 5395. https://doi.org/10.3390/cancers15225395
|
[17]
|
Zhou, B., Hei, H., Fang, J., Qin, J. and Ge, H. (2024) More Aggressive Biological Behavior in Pediatric than in Adult Papillary Thyroid Carcinoma. Asian Journal of Surgery, 47, 443-449. https://doi.org/10.1016/j.asjsur.2023.09.110
|
[18]
|
Myung, J.K., Kwak, B.K., Lim, J.A., Lee, M. and Kim, M.J. (2016) TERT Promoter Mutations and Tumor Persistence/Recurrence in Papillary Thyroid Cancer. Cancer Research and Treatment, 48, 942-947. https://doi.org/10.4143/crt.2015.362
|
[19]
|
Landa, I., Ganly, I., Chan, T.A., Mitsutake, N., Matsuse, M., Ibrahimpasic, T., et al. (2013) Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. The Journal of Clinical Endocrinology & Metabolism, 98, E1562-E1566. https://doi.org/10.1210/jc.2013-2383
|
[20]
|
Yang, H., Park, H., Ryu, H.J., Heo, J., Kim, J., Oh, Y.L., et al. (2022) Frequency of TERT Promoter Mutations in Real-World Analysis of 2,092 Thyroid Carcinoma Patients. Endocrinology and Metabolism, 37, 652-663. https://doi.org/10.3803/enm.2022.1477
|
[21]
|
Tanaka, A., Matsuse, M., Saenko, V., Nakao, T., Yamanouchi, K., Sakimura, C., et al. (2019) TERT mRNA Expression as a Novel Prognostic Marker in Papillary Thyroid Carcinomas. Thyroid, 29, 1105-1114. https://doi.org/10.1089/thy.2018.0695
|
[22]
|
Li, S., Xue, J., Jiang, K., Chen, Y., Zhu, L. and Liu, R. (2024) TERT Promoter Methylation Is Associated with High Expression of TERT and Poor Prognosis in Papillary Thyroid Cancer. Frontiers in Oncology, 14, Article ID: 1325345. https://doi.org/10.3389/fonc.2024.1325345
|
[23]
|
Parvathareddy, S.K., Siraj, A.K., Iqbal, K., Qadri, Z., Ahmed, S.O., Al-Rasheed, M., et al. (2022) TERT Promoter Mutations Are an Independent Predictor of Distant Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma. Frontiers in Endocrinology, 13, Article ID: 808298. https://doi.org/10.3389/fendo.2022.808298
|
[24]
|
Na, H.Y., Yu, H.W., Kim, W., Moon, J.H., Ahn, C.H., Choi, S.I., et al. (2022) Clinicopathological Indicators for TERT Promoter Mutation in Papillary Thyroid Carcinoma. Clinical Endocrinology, 97, 106-115. https://doi.org/10.1111/cen.14728
|
[25]
|
Melo, M., da Rocha, A.G., Vinagre, J., Batista, R., Peixoto, J., Tavares, C., et al. (2014) TERT Promoter Mutations Are a Major Indicator of Poor Outcome in Differentiated Thyroid Carcinomas. The Journal of Clinical Endocrinology & Metabolism, 99, E754-E765. https://doi.org/10.1210/jc.2013-3734
|
[26]
|
Landa, I. (2023) InTERTwined: How TERT Promoter Mutations Impact BRAFV600E-Driven Thyroid Cancers. Current Opinion in Endocrine and Metabolic Research, 30, Article ID: 100460. https://doi.org/10.1016/j.coemr.2023.100460
|
[27]
|
Sako, A., Matsuse, M., Saenko, V., Tanaka, A., Otsubo, R., Morita, M., et al. (2024) TERT Promoter Mutations Increase Tumor Aggressiveness by Altering TERT mRNA Splicing in Papillary Thyroid Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 109, e1827-e1838. https://doi.org/10.1210/clinem/dgae220
|
[28]
|
Vuong, H.G., Altibi, A.M.A., Duong, U.N.P. and Hassell, L. (2017) Prognostic Implication of BRAF and TERT Promoter Mutation Combination in Papillary Thyroid Carcinoma—A Meta‐Analysis. Clinical Endocrinology, 87, 411-417. https://doi.org/10.1111/cen.13413
|
[29]
|
Liu, R., Bishop, J., Zhu, G., Zhang, T., Ladenson, P.W. and Xing, M. (2017) Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncology, 3, 202-208. https://doi.org/10.1001/jamaoncol.2016.3288
|
[30]
|
Mukhtar, N., Alhamoudi, K., Alswailem, M., Alhindi, H., Murugan, A.K., Alghamdi, B., et al. (2023) How Do BRAFV600E and TERT Promoter Mutations Interact with the ATA and TNM Staging Systems in Thyroid Cancer? Frontiers in Endocrinology, 14, Article ID: 1270796. https://doi.org/10.3389/fendo.2023.1270796
|
[31]
|
Cao, J., Zhu, X., Sun, Y., Li, X., Yun, C. and Zhang, W. (2022) The Genetic Duet of BRAF V600E and TERT Promoter Mutations Predicts the Poor Curative Effect of Radioiodine Therapy in Papillary Thyroid Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 49, 3470-3481. https://doi.org/10.1007/s00259-022-05820-x
|
[32]
|
Nasirden, A., Saito, T., Fukumura, Y., Hara, K., Akaike, K., Kurisaki-Arakawa, A., et al. (2016) In Japanese Patients with Papillary Thyroid Carcinoma, TERT Promoter Mutation Is Associated with Poor Prognosis, in Contrast to BRAF V600E Mutation. Virchows Archiv, 469, 687-696. https://doi.org/10.1007/s00428-016-2027-5
|
[33]
|
Fukushima, T. and Takenoshita, S. (2005) Roles of RAS and BRAF Mutations in Thyroid Carcinogenesis. Fukushima Journal of Medical Science, 51, 67-75. https://doi.org/10.5387/fms.51.67
|
[34]
|
Al-Salam, S., Sharma, C., Afandi, B., Al Dahmani, K., Al-Zahrani, A.S., Al Shamsi, A., et al. (2020) BRAF and KRAS Mutations in Papillary Thyroid Carcinoma in the United Arab Emirates. PLOS ONE, 15, e0231341. https://doi.org/10.1371/journal.pone.0231341
|
[35]
|
Adjei, A.A. (2001) Blocking Oncogenic Ras Signaling for Cancer Therapy. JNCI Journal of the National Cancer Institute, 93, 1062-1074. https://doi.org/10.1093/jnci/93.14.1062
|
[36]
|
Brehar, A.C., Brehar, F.M., Bulgar, A.C. and Dumitrache, C. (2013) Genetic and Epigenetic Alterations in Differentiated Thyroid Carcinoma. Journal of Medicine and Life, 6, 403-408.
|
[37]
|
Tayubi, I.A. and Madar, I.H. (2023) Identification of Potential Inhibitor Targeting KRAS Mutation in Papillary Thyroid Carcinoma through Molecular Docking and Dynamic Simulation Analysis. Computers in Biology and Medicine, 152, Article ID: 106377. https://doi.org/10.1016/j.compbiomed.2022.106377
|
[38]
|
Harahap, A.S., Subekti, I., Panigoro, S.S., Werdhani, R.A., et al. (2023) Developing Models to Predict BRAFV600E and RAS Mutational Status in Papillary Thyroid Carcinoma Using Clinicopathological Features and pERK1/2 Immunohistochemistry Expression. Biomedicines, 11, Article No. 2803. https://doi.org/10.3390/biomedicines11102803
|
[39]
|
Jung, C.K., Little, M.P., Lubin, J.H., Brenner, A.V., Wells, S.A., Sigurdson, A.J., et al. (2014) The Increase in Thyroid Cancer Incidence during the Last Four Decades Is Accompanied by a High Frequency of BRAF Mutations and a Sharp Increase in RAS Mutations. The Journal of Clinical Endocrinology & Metabolism, 99, E276-E285. https://doi.org/10.1210/jc.2013-2503
|
[40]
|
Hara, H., Fulton, N., Yashiro, T., Ito, K., DeGroot, L. J. and Kaplan, E. L. (1994) N-Ras Mutation: An Independent Prognostic Factor for Aggressiveness of Papillary Thyroid Carcinoma. Surgery, 116, 1010-1016.
|
[41]
|
Yip, L., Nikiforova, M.N., Yoo, J.Y., McCoy, K.L., Stang, M.T., Armstrong, M.J., et al. (2015) Tumor Genotype Determines Phenotype and Disease-Related Outcomes in Thyroid Cancer: A Study of 1510 Patients. Annals of Surgery, 262, 519-525. https://doi.org/10.1097/sla.0000000000001420
|
[42]
|
Marotta, V., Bifulco, M. and Vitale, M. (2021) Significance of RAS Mutations in Thyroid Benign Nodules and Non-Medullary Thyroid Cancer. Cancers, 13, Article No. 3785. https://doi.org/10.3390/cancers13153785
|
[43]
|
Riccio, I.R., LaForteza, A.C., Hussein, M.H., Linhuber, J.P., Issa, P.P., Staav, J., et al. (2024) Diagnostic Utility of RAS Mutation Testing for Refining Cytologically Indeterminate Thyroid Nodules. Excli Journal, 23, 283-299.
|
[44]
|
Adeniran, A.J., Zhu, Z., Gandhi, M., Steward, D.L., Fidler, J.P., Giordano, T.J., et al. (2006) Correlation between Genetic Alterations and Microscopic Features, Clinical Manifestations, and Prognostic Characteristics of Thyroid Papillary Carcinomas. American Journal of Surgical Pathology, 30, 216-222. https://doi.org/10.1097/01.pas.0000176432.73455.1b
|
[45]
|
Metovic, J., Cabutti, F., Osella-Abate, S., Orlando, G., Tampieri, C., Napoli, F., et al. (2023) Clinical and Pathological Features and Gene Expression Profiles of Clinically Aggressive Papillary Thyroid Carcinomas. Endocrine Pathology, 34, 298-310. https://doi.org/10.1007/s12022-023-09769-x
|
[46]
|
Fukahori, M., Yoshida, A., Hayashi, H., Yoshihara, M., Matsukuma, S., Sakuma, Y., et al. (2012) The Associations between RAS Mutations and Clinical Characteristics in Follicular Thyroid Tumors: New Insights from a Single Center and a Large Patient Cohort. Thyroid, 22, 683-689. https://doi.org/10.1089/thy.2011.0261
|
[47]
|
Heidari, Z., Harati‐Sadegh, M., Arian, A., Maruei‐Milan, R. and Salimi, S. (2020) The Effect of TP53 and P21 Gene Polymorphisms on Papillary Thyroid Carcinoma Susceptibility and Clinical/pathological Features. IUBMB Life, 72, 922-930. https://doi.org/10.1002/iub.2225
|
[48]
|
Perdas, E., Stawski, R., Nowak, D. and Zubrzycka, M. (2018) Potential of Liquid Biopsy in Papillary Thyroid Carcinoma in Context of miRNA, BRAF and P53 Mutation. Current Drug Targets, 19, 1721-1729. https://doi.org/10.2174/1389450119666180226124349
|
[49]
|
Marotta, V., Sciammarella, C., Colao, A. and Faggiano, A. (2016) Application of Molecular Biology of Differentiated Thyroid Cancer for Clinical Prognostication. Endocrine-Related Cancer, 23, R499-R515. https://doi.org/10.1530/erc-16-0372
|
[50]
|
Khan, M.S., Pandith, A.A., Masoodi, S.R., Khan, S.H., Rather, T.A., Andrabi, K.I., et al. (2015) Significant Association of TP53 Arg72pro Polymorphism in Susceptibility to Differentiated Thyroid Cancer. Cancer Biomarkers, 15, 459-465. https://doi.org/10.3233/cbm-150485
|
[51]
|
Wang, F., Wang, P., Wang, B., Fu, Z., Yuan, Y., Yan, S., et al. (2013) Association between TP53 Arg72pro Polymorphism and Thyroid Carcinoma Risk. Tumor Biology, 35, 2723-2728. https://doi.org/10.1007/s13277-013-1359-x
|
[52]
|
Rogounovitch, T., Saenko, V., Ashizawa, K., Sedliarou, I., Namba, H., Abrosimov, A., et al. (2006) TP53 Codon 72 Polymorphism in Radiation-Associated Human Papillary Thyroid Cancer. Oncology Reports, 15, 949-956. https://doi.org/10.3892/or.15.4.949
|
[53]
|
Yu, F.-X., Hu, M.-X., Zhao, H.-X., Niu, L.-J., Rong, X.-Y., Li, W.-H., et al. (2019) Precise Detection of Gene Mutations in Fine-Needle Aspiration Specimens of the Papillary Thyroid Microcarcinoma Using Next-Generation Sequencing. International Journal of Endocrinology, 2019, Article ID: 4723958. https://doi.org/10.1155/2019/4723958
|
[54]
|
Radu, T.G., Mogoantă, L., Busuioc, C.J., Stănescu, C. and Grosu, F. (2015) Histological and Immunohistochemical Aspects of Papillary Thyroid Cancer. Romanian Journal of Morphology and Embryology, 56, 789-795.
|
[55]
|
Asa, S.L. (2017) The Evolution of Differentiated Thyroid Cancer. Pathology, 49, 229-237. https://doi.org/10.1016/j.pathol.2017.01.001
|
[56]
|
Jin, M., Song, D.E., Ahn, J., Song, E., Lee, Y., Sung, T., et al. (2021) Genetic Profiles of Aggressive Variants of Papillary Thyroid Carcinomas. Cancers, 13, Article No. 892. https://doi.org/10.3390/cancers13040892
|
[57]
|
Wen, J., Liu, H., Lin, Y., Liang, Z., Wei, L., Zeng, Q., et al. (2024) Correlation Analysis between BRAFV600E Mutation and Ultrasonic and Clinical Features of Papillary Thyroid Cancer. Heliyon, 10, e29955. https://doi.org/10.1016/j.heliyon.2024.e29955
|
[58]
|
Samà, M.T., Grosso, E., Mele, C., Laurora, S., Monzeglio, O., Marzullo, P., et al. (2020) Molecular Characterisation and Clinical Correlation of Papillary Thyroid Microcarcinoma. Endocrine, 71, 149-157. https://doi.org/10.1007/s12020-020-02380-8
|
[59]
|
Máximo, V., Melo, M., Zhu, Y., Gazzo, A., Sobrinho Simões, M., Da Cruz Paula, A., et al. (2023) Genomic Profiling of Primary and Metastatic Thyroid Cancers. Endocrine-Related Cancer, 31, e230144. https://doi.org/10.1530/erc-23-0144
|
[60]
|
Melo, M., Gaspar da Rocha, A., Batista, R., Vinagre, J., Martins, M.J., Costa, G., et al. (2017) TERT, BRAF, and NRAS in Primary Thyroid Cancer and Metastatic Disease. The Journal of Clinical Endocrinology & Metabolism, 102, 1898-1907. https://doi.org/10.1210/jc.2016-2785
|
[61]
|
Elia, G., Patrizio, A., Ragusa, F., Paparo, S.R., Mazzi, V., Balestri, E., et al. (2022) Molecular Features of Aggressive Thyroid Cancer. Frontiers in Oncology, 12, Article ID: 1099280. https://doi.org/10.3389/fonc.2022.1099280
|
[62]
|
Wang, Z., Ji, X., Zhang, H. and Sun, W. (2024) Clinical and Molecular Features of Progressive Papillary Thyroid Microcarcinoma. International Journal of Surgery, 110, 2313-2322. https://doi.org/10.1097/js9.0000000000001117
|
[63]
|
Semsar-Kazerooni, K., Morand, G.B., Payne, A.E., da Silva, S.D., Forest, V., Hier, M.P., et al. (2022) Mutational Status May Supersede Tumor Size in Predicting the Presence of Aggressive Pathologic Features in Well Differentiated Thyroid Cancer. Journal of Otolaryngology—Head & Neck Surgery, 51, Article No. 9. https://doi.org/10.1186/s40463-022-00559-9
|
[64]
|
Quiros, R.M., Ding, H.G., Gattuso, P., Prinz, R.A. and Xu, X. (2005) Evidence That One Subset of Anaplastic Thyroid Carcinomas Are Derived from Papillary Carcinomas Due to BRAF and P53 Mutations. Cancer, 103, 2261-2268. https://doi.org/10.1002/cncr.21073
|
[65]
|
Fallahi, P., Mazzi, V., Vita, R., Ferrari, S., Materazzi, G., Galleri, D., et al. (2015) New Therapies for Dedifferentiated Papillary Thyroid Cancer. International Journal of Molecular Sciences, 16, 6153-6182. https://doi.org/10.3390/ijms16036153
|
[66]
|
Leboulleux, S., Lamartina, L., Hadoux, J., Baudin, E. and Schlumberger, M. (2022) Emerging Drugs for the Treatment of Radioactive Iodine Refractory Papillary Thyroid Cancer. Expert Opinion on Investigational Drugs, 31, 669-679. https://doi.org/10.1080/13543784.2022.2071696
|
[67]
|
Aashiq, M., Silverman, D.A., Na’ara, S., Takahashi, H. and Amit, M. (2019) Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies. Cancers, 11, Article No. 1382. https://doi.org/10.3390/cancers11091382
|
[68]
|
Cavallo, M.R., Yo, J.C., Gallant, K.C., Cunanan, C.J., Amirfallah, A., Daniali, M., et al. (2024) Mcl-1 Mediates Intrinsic Resistance to RAF Inhibitors in Mutant BRAF Papillary Thyroid Carcinoma. Cell Death Discovery, 10, Article No. 175. https://doi.org/10.1038/s41420-024-01945-0
|
[69]
|
Liu, J., Liu, Y., Lin, Y. and Liang, J. (2019) Radioactive Iodine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinology and Metabolism, 34, 215-225. https://doi.org/10.3803/enm.2019.34.3.215
|
[70]
|
Simões-Pereira, J., Saramago, A., Rodrigues, R., Pojo, M., Pires, C., Horta, M., et al. (2023) Clinical and Molecular Characterisation of Metastatic Papillary Thyroid Cancer According to Radioiodine Therapy Outcomes. Endocrine, 84, 625-634. https://doi.org/10.1007/s12020-023-03633-y
|