[1]
|
Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921. https://doi.org/10.1002/andp.19053221004
|
[2]
|
Kristian, J. and Sachs, R.K. (1966) Observations in Cosmology. The Astrophysical Journal, 143, 379. https://doi.org/10.1086/148522
|
[3]
|
Ellis, G.F.R. (1975) Cosmology and Verifiability. Quarterly Journal of the Royal Astronomical Society, 16, 245-264.
|
[4]
|
Dautcourt, G. (1983) The Cosmological Problem as Initial Value Problem on the Observer’s Past Light Cone: Geometry. Journal of Physics A: Mathematical and General, 16, 3507-3528. https://doi.org/10.1088/0305-4470/16/15/016
|
[5]
|
Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R. and Whitman, A.P. (1985) Ideal Observational Cosmology. Physics Reports, 124, 315-417. https://doi.org/10.1016/0370-1573(85)90030-4
|
[6]
|
Pascual-Sánchez, J.-F. (1999) Cosmic Acceleration: Inhomogeneity versus Vacuum Energy. Modern Physics Letters A, 14, 1539-1544. https://doi.org/10.1142/s0217732399001632
|
[7]
|
Maartens, R. (2011) Is the Universe Homogeneous? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 5115-5137. https://doi.org/10.1098/rsta.2011.0289
|
[8]
|
Krasiński, A. (1998) Physics and Cosmology in an Inhomogeneous Universe. In: Sato, H. and Sugiyama, N., Eds., Frontiers Science Series 23: Black Holes and High Energy Astrophysics, Universal Academic Press, 133.
|
[9]
|
Ribeiro, M.B. (1995) Observations in the Einstein-De Sitter Cosmology: Dust Statistics and Limits of Apparent Homogeneity. The Astrophysical Journal, 441, 477. https://doi.org/10.1086/175374
|
[10]
|
Clowes, R.G. and Campusano, L.E. (1991) A 100-200 Mpc Group of Quasars. Monthly Notices of the Royal Astronomical Society, 249, 218-226. https://doi.org/10.1093/mnras/249.2.218
|
[11]
|
Gott III, J.R., Jurić, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., et al. (2005) A Map of the Universe. The Astrophysical Journal, 624, 463-484. https://doi.org/10.1086/428890
|
[12]
|
Clowes, R.G., Campusano, L.E., Graham, M.J. and Söchting, I.K. (2011) Two Close Large Quasar Groups of Size ∼ 350 Mpc at z ∼ 1.2. Monthly Notices of the Royal Astronomical Society, 419, 556-565. https://doi.org/10.1111/j.1365-2966.2011.19719.x
|
[13]
|
Clowes, R.G., Harris, K.A., Raghunathan, S., Campusano, L.E., Söchting, I.K. and Graham, M.J. (2013) A Structure in the Early Universe at Z ∼ 1.3 That Exceeds the Homogeneity Scale of the R-W Concordance Cosmology. Monthly Notices of the Royal Astronomical Society, 429, 2910-2916. https://doi.org/10.1093/mnras/sts497
|
[14]
|
Horvath, I., Hakkila, J. and Bagoly, Z. (2013) The Largest Structure of the Universe, Defined by Gamma-Ray Bursts.
|
[15]
|
Horváth, I., Hakkila, J. and Bagoly, Z. (2014) Possible Structure in the GRB Sky Distribution at Redshift Two. Astronomy & Astrophysics, 561, L12. https://doi.org/10.1051/0004-6361/201323020
|
[16]
|
Horváth, I., Bagoly, Z., Hakkila, J. and Tóth, L.V. (2015) New Data Support the Existence of the Hercules-Corona Borealis Great Wall. Astronomy & Astrophysics, 584, A48. https://doi.org/10.1051/0004-6361/201424829
|
[17]
|
Secrest, N.J., Hausegger, S.v., Rameez, M., Mohayaee, R., Sarkar, S. and Colin, J. (2021) A Test of the Cosmological Principle with Quasars. The Astrophysical Journal Letters, 908, L51. https://doi.org/10.3847/2041-8213/abdd40
|
[18]
|
Lopez, A.M., Clowes, R.G. and Williger, G.M. (2022) A Giant Arc on the Sky. Monthly Notices of the Royal Astronomical Society, 516, 1557-1572. https://doi.org/10.1093/mnras/stac2204
|
[19]
|
Lopez, A.M., Clowes, R.G. and Williger, G.M. (2024) A Big Ring on the Sky.
|
[20]
|
Migkas, K., Schellenberger, G., Reiprich, T.H., Pacaud, F., Ramos-Ceja, M.E. and Lovisari, L. (2020) Probing Cosmic Isotropy with a New X-Ray Galaxy Cluster Sample through the Lx-T Scaling Relation. Astronomy & Astrophysics, 636, A15. https://doi.org/10.1051/0004-6361/201936602
|
[21]
|
Javanmardi, B., Porciani, C., Kroupa, P. and Pflamm-Altenburg, J. (2015) Probing the Isotropy of Cosmic Acceleration Traced by Type Ia Supernovae. The Astrophysical Journal, 810, 47. https://doi.org/10.1088/0004-637x/810/1/47
|
[22]
|
Perlmutter, S., Aldering, G., Valle, M.D., Deustua, S., Ellis, R.S., Fabbro, S., et al. (1998) Discovery of a Supernova Explosion at Half the Age of the Universe. Nature, 391, 51-54. https://doi.org/10.1038/34124
|
[23]
|
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
|
[24]
|
Fliessbach, T. (2006) Allgemeine Relativitätstheorie.
|
[25]
|
Moffat, J.W. and Tatarski, D.C. (1992) Redshift and Structure Formation in a Spatially Flat Inhomogeneous Universe. Physical Review D, 45, 3512-3522. https://doi.org/10.1103/physrevd.45.3512
|
[26]
|
Moffat, J.W. and Tatarski, D.C. (1995) Cosmological Observations in a Local Void. The Astrophysical Journal, 453, 17. https://doi.org/10.1086/176365
|
[27]
|
Mustapha, N., Hellaby, C. and Ellis, G.F.R. (1997) Large-Scale Inhomogeneity versus Source Evolution: Can We Distinguish Them Observationally? Monthly Notices of the Royal Astronomical Society, 292, 817-830. https://doi.org/10.1093/mnras/292.4.817
|
[28]
|
Célérier, M.-N. (2000) Do We Really See a Cosmological Constant in the Supernovae Data? Astronomy & Astrophysics, 353, 63-71.
|
[29]
|
Tomita, K. (2001) A Local Void and the Accelerating Universe. Monthly Notices of the Royal Astronomical Society, 326, 287-292. https://doi.org/10.1046/j.1365-8711.2001.04597.x
|
[30]
|
Iguchi, H., Nakamura, T. and Nakao, K.-. (2002) Is Dark Energy the Only Solution to the Apparent Acceleration of the Present Universe? Progress of Theoretical Physics, 108, 809-818. https://doi.org/10.1143/ptp.108.809
|
[31]
|
Moffat, J.W. (2005) Cosmic Microwave Background, Accelerating Universe and Inhomogeneous Cosmology. Journal of Cosmology and Astroparticle Physics, 2005, Article No. 12. https://doi.org/10.1088/1475-7516/2005/10/012
|
[32]
|
Alnes, H., Amarzguioui, M. and Grøn, Ø. (2006) Inhomogeneous Alternative to Dark Energy? Physical Review D, 73, Article ID: 083519. https://doi.org/10.1103/physrevd.73.083519
|
[33]
|
Alnes, H. and Amarzguioui, M. (2006) CMB Anisotropies Seen by an Off-Center Observer in a Spherically Symmetric Inhomogeneous Universe. Physical Review D, 74, Article ID: 103520. https://doi.org/10.1103/physrevd.74.103520
|
[34]
|
Celerier, M.-N. (2006) Accelerated-Like Expansion: Inhomogeneities versus Dark Energy.
|
[35]
|
Vanderveld, R.A., Flanagan, É.É. and Wasserman, I. (2006) Mimicking Dark Energy with Lemaître-Tolman-Bondi Models: Weak Central Singularities and Critical Points. Physical Review D, 74, Article ID: 023506. https://doi.org/10.1103/physrevd.74.023506
|
[36]
|
Chung, D.J.H. and Romano, A.E. (2006) Mapping Luminosity-Redshift Relationship to Lemaitre-Tolman-Bondi Cosmology. Physical Review D, 74, Article ID: 103507. https://doi.org/10.1103/physrevd.74.103507
|
[37]
|
Alnes, H. and Amarzguioui, M. (2007) Supernova Hubble Diagram for Off-Center Observers in a Spherically Symmetric Inhomogeneous Universe. Physical Review D, 75, Article ID: 023506. https://doi.org/10.1103/physrevd.75.023506
|
[38]
|
Biswas, T., Mansouri, R. and Notari, A. (2007) Non-Linear Structure Formation and “Apparent” Acceleration: An Investigation. Journal of Cosmology and Astroparticle Physics, 2007, Article No. 17. https://doi.org/10.1088/1475-7516/2007/12/017
|
[39]
|
Céélérier, M.-N. (2007) Inhomogeneities in the Universe and the Fitting Problem.
|
[40]
|
Romano, A.E. (2007) Redshift Spherical Shell Energy in Isotropic Universes. Physical Review D, 76, Article ID: 103525. https://doi.org/10.1103/physrevd.76.103525
|
[41]
|
Yoo, C., Kai, T. and Nakao, K. (2008) Solving the Inverse Problem with Inhomogeneous Universes. Progress of Theoretical Physics, 120, 937-960. https://doi.org/10.1143/ptp.120.937
|
[42]
|
Garcia-Bellido, J. and Haugbølle, T. (2008) Confronting Lemaitre-Tolman-Bondi Models with Observational Cosmology. Journal of Cosmology and Astroparticle Physics, 2008, Article No. 3. https://doi.org/10.1088/1475-7516/2008/04/003
|
[43]
|
Zibin, J.P., Moss, A. and Scott, D. (2008) Can We Avoid Dark Energy? Physical Review Letters, 101, Article ID: 251303. https://doi.org/10.1103/physrevlett.101.251303
|
[44]
|
Clifton, T., Ferreira, P.G. and Land, K. (2008) Living in a Void: Testing the Copernican Principle with Distant Supernovae. Physical Review Letters, 101, Article ID: 131302. https://doi.org/10.1103/physrevlett.101.131302
|
[45]
|
Alexander, S., Biswas, T., Notari, A. and Vaid, D. (2009) Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 25. https://doi.org/10.1088/1475-7516/2009/09/025
|
[46]
|
Bolejko, K. and Wyithe, J.S.B. (2009) Testing the Copernican Principle via Cosmological Observations. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 20. https://doi.org/10.1088/1475-7516/2009/02/020
|
[47]
|
Clarkson, C., Clifton, T. and February, S. (2009) Perturbation Theory in Lemaȋtre-Tolman-Bondi Cosmology. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 25. https://doi.org/10.1088/1475-7516/2009/06/025
|
[48]
|
Clifton, T., Ferreira, P.G. and Zuntz, J. (2009) What the Small Angle CMB Really Tells Us about the Curvature of the Universe. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 29. https://doi.org/10.1088/1475-7516/2009/07/029
|
[49]
|
Krasiński, A., Hellaby, C., Bolejko, K. and Célérier, M. (2010) Imitating Accelerated Expansion of the Universe by Matter Inhomogeneities: Corrections of Some Misunderstandings. General Relativity and Gravitation, 42, 2453-2475. https://doi.org/10.1007/s10714-010-0993-5
|
[50]
|
February, S., Larena, J., Smith, M. and Clarkson, C. (2010) Rendering Dark Energy Void. Monthly Notices of the Royal Astronomical Society, 405, 2231-2242. https://doi.org/10.1111/j.1365-2966.2010.16627.x
|
[51]
|
Blomqvist, M. and Mörtsell, E. (2010) Supernovae as Seen by Off-Center Observers in a Local Void. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 6. https://doi.org/10.1088/1475-7516/2010/05/006
|
[52]
|
Moffat, J.W. (2009) Void or Dark Energy?
|
[53]
|
Yoo, C., Nakao, K. and Sasaki, M. (2010) CMB Observations in LTB Universes: Part I. Matching Peak Positions in the CMB Spectrum. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 12. https://doi.org/10.1088/1475-7516/2010/07/012
|
[54]
|
Romano, A.E. (2010) Can the Cosmological Constant Be Mimicked by Smooth Large-Scale Inhomogeneities for More than One Observable? Journal of Cosmology and Astroparticle Physics, 2010, Article No. 20. https://doi.org/10.1088/1475-7516/2010/05/020
|
[55]
|
Romano, A.E. (2010) Mimicking the Cosmological Constant for More than One Observable with Large Scale Inhomogeneities. Physical Review D, 82, Article ID: 123528. https://doi.org/10.1103/physrevd.82.123528
|
[56]
|
Romano, A.E. (2010) Testing Homogeneity with Galaxy Number Counts: Light-Cone Metric and General Low-Redshift Expansion for a Central Observer in a Matter Dominated Isotropic Universe without Cosmological Constant. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 4. https://doi.org/10.1088/1475-7516/2010/01/004
|
[57]
|
Fosalba, P. and Gaztañaga, E. (2021) Explaining Cosmological Anisotropy: Evidence for Causal Horizons from CMB Data. Monthly Notices of the Royal Astronomical Society, 504, 5840-5862. https://doi.org/10.1093/mnras/stab1193
|
[58]
|
Aluri, P.K. and Patel, S.K. (2023) Examining Statistical Isotropy of CMB Low Multipoles from Planck PR4 Data. Physics Letters B, 836, Article ID: 137593. https://doi.org/10.1016/j.physletb.2022.137593
|
[59]
|
Gomes, L.G. (2024) Breaking the Cosmological Principle into Pieces: A Prelude to the Intrinsically Homogeneous and Isotropic Spacetimes. Classical and Quantum Gravity, 41, Article ID: 095004. https://doi.org/10.1088/1361-6382/ad3609
|
[60]
|
Riess, A.G., Breuval, L., Yuan, W., Casertano, S., Macri, L.M., Bowers, J.B., et al. (2022) Cluster Cepheids with High Precision Gaia Parallaxes, Low Zero-Point Uncertainties, and Hubble Space Telescope Photometry. The Astrophysical Journal, 938, 36. https://doi.org/10.3847/1538-4357/ac8f24
|
[61]
|
de Jaeger, T., Galbany, L., Riess, A.G., Stahl, B.E., Shappee, B.J., Filippenko, A.V., et al. (2022) A 5 per Cent Measurement of the Hubble-Lemaître Constant from Type II Supernovae. Monthly Notices of the Royal Astronomical Society, 514, 4620-4628. https://doi.org/10.1093/mnras/stac1661
|
[62]
|
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A.J.e.a. (2020) Planck Collaboration (2018) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysics, 641, 6.
|
[63]
|
Fields, B.D., Olive, K.A., Yeh, T. and Young, C. (2020) Big-Bang Nucleosynthesis after Planck. Journal of Cosmology and Astroparticle Physics, 2020, Article No. 10. https://doi.org/10.1088/1475-7516/2020/03/010
|
[64]
|
Abbott, T.M.C., Abdalla, F.B., Annis, J., Bechtol, K., Blazek, J., Benson, B.A., et al. (2018) Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 480, 3879-3888. https://doi.org/10.1093/mnras/sty1939
|
[65]
|
Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with Λcdm. The Astrophysical Journal Letters, 908, L6. https://doi.org/10.3847/2041-8213/abdbaf
|
[66]
|
Freedman, W.L., Madore, B.F., Hatt, D., Hoyt, T.J., Jang, I.S., Beaton, R.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. The Astrophysical Journal, 882, 34. https://doi.org/10.3847/1538-4357/ab2f73
|
[67]
|
Birrer, S. and Treu, T. (2021) TDCOSMO. V. Strategies for Precise and Accurate Measurements of the Hubble Constant with Strong Lensing. Astronomy & Astrophysics, 649, A61. https://doi.org/10.1051/0004-6361/202039179
|
[68]
|
Wong, K.C., Suyu, S.H., Chen, G.C., Rusu, C.E., Millon, M., Sluse, D., et al. (2019) H0LiCOW-XIII. A 2.4 per Cent Measurement of H0 from Lensed Quasars: 5.3σ Tension between Early-and Late-Universe Probes. Monthly Notices of the Royal Astronomical Society, 498, 1420-1439. https://doi.org/10.1093/mnras/stz3094
|
[69]
|
Schombert, J., McGaugh, S. and Lelli, F. (2020) Using the Baryonic Tully-Fisher Relation to Measure H0. The Astronomical Journal, 160, 71. https://doi.org/10.3847/1538-3881/ab9d88
|
[70]
|
Kourkchi, E., Tully, R.B., Eftekharzadeh, S., Llop, J., Courtois, H.M., Guinet, D., et al. (2020) Cosmicflows-4: The Catalog of ∼10,000 Tully-Fisher Distances. The Astrophysical Journal, 902, 145. https://doi.org/10.3847/1538-4357/abb66b
|
[71]
|
Soltis, J., Casertano, S. and Riess, A.G. (2021) The Parallax of ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant. The Astrophysical Journal Letters, 908, L5. https://doi.org/10.3847/2041-8213/abdbad
|
[72]
|
Blakeslee, J.P., Jensen, J.B., Ma, C., Milne, P.A. and Greene, J.E. (2021) The Hubble Constant from Infrared Surface Brightness Fluctuation Distances. The Astrophysical Journal, 911, 65. https://doi.org/10.3847/1538-4357/abe86a
|
[73]
|
Kim, Y.J., Kang, J., Lee, M.G. and Jang, I.S. (2020) Determination of the Local Hubble Constant from Virgo Infall Using TRGB Distances. The Astrophysical Journal, 905, 104. https://doi.org/10.3847/1538-4357/abbd97
|
[74]
|
Pesce, D.W., Braatz, J.A., Reid, M.J., Riess, A.G., Scolnic, D., Condon, J.J., et al. (2020) The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints. The Astrophysical Journal Letters, 891, L1. https://doi.org/10.3847/2041-8213/ab75f0
|
[75]
|
Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., et al. (2021) A Gravitational-Wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. The Astrophysical Journal, 909, 218.
|
[76]
|
De Felice, A., Mukohyama, S. and Pookkillath, M.C. (2021) Addressing H0 Tension by Means of VCDM. Physics Letters B, 816, Article ID: 136201. https://doi.org/10.1016/j.physletb.2021.136201
|
[77]
|
Hu, J.P. and Wang, F.Y. (2022) High-Redshift Cosmography: Application and Comparison with Different Methods. Astronomy & Astrophysics, 661, A71. https://doi.org/10.1051/0004-6361/202142162
|
[78]
|
Perivolaropoulos, L. and Skara, F. (2022) A Reanalysis of the Latest SH0ES Data for H0: Effects of New Degrees of Freedom on the Hubble Tension. Universe, 8, Article No. 502. https://doi.org/10.3390/universe8100502
|
[79]
|
Khetan, N., Izzo, L., Branchesi, M., Wojtak, R., Cantiello, M., Murugeshan, C., et al. (2021) A New Measurement of the Hubble Constant Using Type Ia Supernovae Calibrated with Surface Brightness Fluctuations. Astronomy & Astrophysics, 647, A72. https://doi.org/10.1051/0004-6361/202039196
|
[80]
|
Huang, C.D., Riess, A.G., Yuan, W., Macri, L.M., Zakamska, N.L., Casertano, S., et al. (2020) Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant. The Astrophysical Journal, 889, 5. https://doi.org/10.3847/1538-4357/ab5dbd
|
[81]
|
Mörtsell, E., Goobar, A., Johansson, J. and Dhawan, S. (2022) The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties. The Astrophysical Journal, 935, 58. https://doi.org/10.3847/1538-4357/ac7c19
|
[82]
|
Wang, Y., Tang, S., Jin, Z. and Fan, Y. (2023) The Late Afterglow of GW170817/GRB 170817A: A Large Viewing Angle and the Shift of the Hubble Constant to a Value More Consistent with the Local Measurements. The Astrophysical Journal, 943, 13. https://doi.org/10.3847/1538-4357/aca96c
|
[83]
|
Huang, C.D., Yuan, W., Riess, A.G., Hack, W., Whitelock, P.A., Zakamska, N.L., et al. (2024) The Mira Distance to M101 and a 4% Measurement of H0. The Astrophysical Journal, 963, 83. https://doi.org/10.3847/1538-4357/ad1ff8
|
[84]
|
Perivolaropoulos, L. and Skara, F. (2022) Challenges for ΛCDM: An Update. New Astronomy Reviews, 95, Article ID: 101659. https://doi.org/10.1016/j.newar.2022.101659
|
[85]
|
Di Valentino, E., Anchordoqui, L.A., Akarsu, Ö., Ali-Haimoud, Y., Amen-dola, L., Arendse, N., et al. (2021) Cosmology Intertwined II: The Hubble Constant Tension. Astroparticle Physics, 131, Article ID: 102605.
|
[86]
|
Di Valentino, E. (2022) Challenges of the Standard Cosmological Model. Universe, 8, Article No. 399. https://doi.org/10.3390/universe8080399
|
[87]
|
Verde, L., Treu, T. and Riess, A.G. (2019) Tensions between the Early and Late Universe. Nature Astronomy, 3, 891-895. https://doi.org/10.1038/s41550-019-0902-0
|
[88]
|
Shah, P., Lemos, P. and Lahav, O. (2021) A Buyer’s Guide to the Hubble Constant. The Astronomy and Astrophysics Review, 29, Article No. 9. https://doi.org/10.1007/s00159-021-00137-4
|
[89]
|
Schmitz, K. (2022) Modern Cosmology, an Amuse-Gueule. In: Streit-Bianchi, M., Catapano, P., Galbiati, C. and Magnani, E., Eds., Advances in Cosmology: Science-Art-Philosophy, Springer International Publishing, 37-70.
|
[90]
|
Rezazadeh, K., Ashoorioon, A. and Grin, D. (2022) Cascading Dark Energy.
|
[91]
|
Addison, G.E. (2021) High H0 Values from CMB E-Mode Data: A Clue for Resolving the Hubble Tension? The Astrophysical Journal Letters, 912, L1. https://doi.org/10.3847/2041-8213/abf56e
|
[92]
|
Knox, L. and Millea, M. (2020) Hubble Constant Hunter’s Guide. Physical Review D, 101, Article ID: 043533. https://doi.org/10.1103/physrevd.101.043533
|
[93]
|
Kovács, A., Beck, R., Szapudi, I., Csabai, I., Rácz, G. and Dobos, L. (2020) A Common Explanation of the Hubble Tension and Anomalous Cold Spots in the Cmb. Monthly Notices of the Royal Astronomical Society, 499, 320-333. https://doi.org/10.1093/mnras/staa2631
|
[94]
|
Schöneberg, N., Lesgourgues, J. and Hooper, D.C. (2019) The BAO+BBN Take on the Hubble Tension. Journal of Cosmology and Astroparticle Physics, 2019, Article No. 29. https://doi.org/10.1088/1475-7516/2019/10/029
|
[95]
|
Buen-Abad, M.A., Chacko, Z., Kilic, C., Marques-Tavares, G. and Youn, T. (2023) Stepped Partially Acoustic Dark Matter, Large Scale Structure, and the Hubble Tension. Journal of High Energy Physics, 2023, Article No. 12. https://doi.org/10.1007/jhep06(2023)012
|
[96]
|
Murgia, R., Abellán, G.F. and Poulin, V. (2021) Early Dark Energy Resolution to the Hubble Tension in Light of Weak Lensing Surveys and Lensing Anomalies. Physical Review D, 103, Article ID: 063502. https://doi.org/10.1103/physrevd.103.063502
|
[97]
|
Vagnozzi, S. (2020) New Physics in Light of the H0 Tension: An Alternative View. Physical Review D, 102, Article ID: 023518. https://doi.org/10.1103/physrevd.102.023518
|
[98]
|
Abdalla, E., Abellán, G.F., Aboubrahim, A., Agnello, A., Akarsu, Ö., Akrami, Y., et al. (2022) Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. Journal of High Energy Astrophysics, 34, 49-211. https://doi.org/10.1016/j.jheap.2022.04.002
|
[99]
|
Friedman, A. (1922) Über die Krümmung des Raumes. Zeitschrift für Physik, 10, 377-386. https://doi.org/10.1007/bf01332580
|
[100]
|
Lemaître, G. (1927) Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des ńebuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, 47, 49-59.
|
[101]
|
Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173. https://doi.org/10.1073/pnas.15.3.168
|
[102]
|
Nussbaumer, H. and Bieri, L. (2009) Discovering the Expanding Universe.
|
[103]
|
van den Bergh, S. (2011) The Curious Case of Lemaître’s Equation No. 24. Journal of the Royal Astronomical Society of Canada, 105, 151-152.
|
[104]
|
Block, D.L. (2012) Georges Lemaître and Stigler’s Law of Eponymy. In: Astrophysics and Space Science Library, Springer, 89-96.
|
[105]
|
Reich, E.S. (2011) Edwin Hubble in Translation Trouble. Nature. https://doi.org/10.1038/news.2011.385
|
[106]
|
Way, M.J. (2013) Dismantling Hubble’s Legacy? In: Way, M.J. and Hunter, D., Eds., Origins of the Expanding Universe: 1912-1932, Astronomical Society of the Pacific Conference Series, vol. 471, 97.
|
[107]
|
de Sitter, W. (1916) On Einstein’s Theory of Gravitation and Its Astronomical Consequences. First Paper. Monthly Notices of the Royal Astronomical Society, 76, 699-728. https://doi.org/10.1093/mnras/76.9.699
|
[108]
|
Wirts, C. (1921) Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen. Astronomische Nachrichten, 215, 349-354. https://doi.org/10.1002/asna.19212151703
|
[109]
|
Humason, M.L. (1931) Apparent Velocity-Shifts in the Spectra of Faint Nebulae. The Astrophysical Journal, 74, 35. https://doi.org/10.1086/143287
|
[110]
|
Hubble, E. and Tolman, R.C. (1935) Two Methods of Investigating the Nature of the Nebular Redshift. The Astrophysical Journal, 82, 302. https://doi.org/10.1086/143682
|
[111]
|
Assis, A.K.T., Neves, M.C.D., Soares, D.S.L. (2009) Hubble’s Cosmology: From a Finite Expanding Universe to a Static Endless Universe. In: Potter, F., Ed., 2nd Crisis in Cosmology Conference, Astronomical Society of the Pacific Conference Series, Vol. 413, 255.
|
[112]
|
Assis, A.K.T. and Neves, M.C.D. (1995) The Redshift Revisited. Astrophysics and Space Science, 227, 13-24. https://doi.org/10.1007/bf00678063
|
[113]
|
Ellis, G.F.R., Maartens, R. and Nel, S.D. (1978) The Expansion of the Universe. Monthly Notices of the Royal Astronomical Society, 184, 439-465. https://doi.org/10.1093/mnras/184.3.439
|
[114]
|
Ellis, G.F.R. (1978) Is the Universe Expanding? General Relativity and Gravitation, 9, 87-94. https://doi.org/10.1007/bf00760145
|
[115]
|
Chastel, A.A. (1976) A Critical Analysis of the Explanation of Redshifts by a New Field. Astronomy and Astrophysics, 53, 67-82.
|
[116]
|
Chodorowski, M.J. (2007) Is Space Really Expanding? A Counterexample. Old and New Concepts of Physics, 4, 15-33. https://doi.org/10.2478/v10005-007-0002-2
|
[117]
|
Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D, 23, 347-356. https://doi.org/10.1103/physrevd.23.347
|
[118]
|
Linde, A.D. (1982) A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B, 108, 389-393. https://doi.org/10.1016/0370-2693(82)91219-9
|
[119]
|
Tsujikawa, S. (2003) Introductory Review of Cosmic Inflation.
|
[120]
|
Steinhardt, P.J. (2011) The Inflation Debate. Scientific American, 304, 36-43. https://doi.org/10.1038/scientificamerican0411-36
|
[121]
|
Penrose, R. (1989) Difficulties with Inflationary Cosmology. Annals of the New York Academy of Sciences, 571, 249-264. https://doi.org/10.1111/j.1749-6632.1989.tb50513.x
|
[122]
|
Petit, J. (1988) An Interpretation of Cosmological Model with Variable Light Velocity. Modern Physics Letters A, 3, 1527-1532. https://doi.org/10.1142/s0217732388001823
|
[123]
|
Midy, P. and Petit, J. (1999) Scale Invariant Cosmology. International Journal of Modern Physics D, 8, 271-289. https://doi.org/10.1142/s0218271899000213
|
[124]
|
Moffat, J.W. (1993) Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology. International Journal of Modern Physics D, 2, 351-365. https://doi.org/10.1142/s0218271893000246
|
[125]
|
Barrow, J.D. (1999) Cosmologies with Varying Light Speed. Physical Review D, 59, Article ID: 043515. https://doi.org/10.1103/physrevd.59.043515
|
[126]
|
Albrecht, A. and Magueijo, J. (1999) Time Varying Speed of Light as a Solution to Cosmological Puzzles. Physical Review D, 59, Article ID: 043516. https://doi.org/10.1103/physrevd.59.043516
|
[127]
|
Gimenez, J.C. (2003) A Simple Cosmological Model with Decreasing Light Speed.
|
[128]
|
Fahr, H.J. and Zönnchen, J.H. (2009) The “Writing on the Cosmic Wall”: Is There a Straightforward Explanation of the Cosmic Microwave Background? Annalen der Physik, 521, 699-721. https://doi.org/10.1002/andp.200952110-1104
|
[129]
|
Monna, A., Seitz, S., Greisel, N., Eichner, T., Drory, N., Postman, M., et al. (2013) CLASH: Z ∼ 6 Young Galaxy Candidate Quintuply Lensed by the Frontier Field Cluster RXC J2248.7-4431. Monthly Notices of the Royal Astronomical Society, 438, 1417-1434. https://doi.org/10.1093/mnras/stt2284
|
[130]
|
Zheng, W., Zitrin, A., Infante, L., Laporte, N., Huang, X., Moustakas, J., et al. (2017) Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223. The Astrophysical Journal, 836, 210. https://doi.org/10.3847/1538-4357/aa5d55
|
[131]
|
Oesch, P.A., Brammer, G., Dokkum, P.G.V., Illingworth, G.D., Bouwens, R.J., Labbé, I., et al. (2016) A Remarkably Luminous Galaxy at Z = 11.1 Measured with Hubble Space Telescope Grism Spectroscopy. The Astrophysical Journal, 819, 129. https://doi.org/10.3847/0004-637x/819/2/129
|
[132]
|
Finkelstein, S.L., Bagley, M.B., Ferguson, H.C., Wilkins, S.M., Kartaltepe, J.S., Papovich, C., et al. (2023) CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST. The Astrophysical Journal Letters, 946, L13. https://doi.org/10.3847/2041-8213/acade4
|
[133]
|
Harikane, Y., Ouchi, M., Oguri, M., Ono, Y., Nakajima, K., Isobe, Y., et al. (2023) A Comprehensive Study of Galaxies at Z ∼ 9-16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-Reionization Epoch. The Astrophysical Journal Supplement Series, 265, 5. https://doi.org/10.3847/1538-4365/acaaa9
|
[134]
|
Castellano, M., Fontana, A., Treu, T., Santini, P., Merlin, E., Leethochawalit, N., et al. (2022) Early Results from GLASS-JWST. III. Galaxy Candidates at Z ∼ 9-15. The Astrophysical Journal Letters, 938, L15. https://doi.org/10.3847/2041-8213/ac94d0
|
[135]
|
Santini, P., Fontana, A., Castellano, M., Leethochawalit, N., Trenti, M., Treu, T., et al. (2023) Early Results from GLASS-JWST. XI. Stellar Masses and Mass-to-Light Ratio of Z > 7 Galaxies. The Astrophysical Journal Letters, 942, L27. https://doi.org/10.3847/2041-8213/ac9586
|
[136]
|
Kocevski, D.D., Barro, G., McGrath, E.J., Finkelstein, S.L., Bagley, M.B., Ferguson, H.C., et al. (2023) CEERS Key Paper. II. A First Look at the Resolved Host Properties of AGN at 3 < Z < 5 with JWST. The Astrophysical Journal Letters, 946, L14. https://doi.org/10.3847/2041-8213/acad00
|
[137]
|
Dekel, A., Sarkar, K.C., Birnboim, Y., Mandelker, N. and Li, Z. (2023) Efficient Formation of Massive Galaxies at Cosmic Dawn by Feedback-Free Starbursts. Monthly Notices of the Royal Astronomical Society, 523, 3201-3218. https://doi.org/10.1093/mnras/stad1557
|
[138]
|
Ferrara, A. (2023) Super-Early JWST Galaxies, Outflows and Lyman Alpha Visibility in the EoR.
|
[139]
|
Labbé, I., van Dokkum, P., Nelson, E., Bezanson, R., Suess, K.A., Leja, J., et al. (2023) A Population of Red Candidate Massive Galaxies ~ 600 Myr after the Big Bang. Nature, 616, 266-269. https://doi.org/10.1038/s41586-023-05786-2
|
[140]
|
Ferrara, A., Pallottini, A. and Dayal, P. (2023) On the Stunning Abundance of Super-Early, Luminous Galaxies Revealed by JWST. Monthly Notices of the Royal Astronomical Society, 522, 3986-3991. https://doi.org/10.1093/mnras/stad1095
|
[141]
|
Jones, E., Smith, B., Davé, R., Narayanan, D. and Li, Q. (2024) Simba-EoR: Early Galaxy Formation in the Simba Simulation Including a New Sub-Grid Interstellar Medium Model.
|
[142]
|
Bond, H.E., Nelan, E.P., VandenBerg, D.A., Schaefer, G.H. and Harmer, D. (2013) HD 140283: A Star in the Solar Neighborhood That Formed Shortly after the Big Bang. The Astrophysical Journal, 765, L12. https://doi.org/10.1088/2041-8205/765/1/l12
|
[143]
|
Creevey, O.L., Thévenin, F., Berio, P., Heiter, U., von Braun, K., Mourard, D., et al. (2015) Benchmark Stars for Gaia Fundamental Properties of the Population II Star HD 140283 from Interferometric, Spectroscopic, and Photometric Data. Astronomy & Astrophysics, 575, A26. https://doi.org/10.1051/0004-6361/201424310
|
[144]
|
Tang, J. and Joyce, M. (2021) Revised Best Estimates for the Age and Mass of the Methuselah Star HD 140283 Using MESA and Interferometry and Implications for 1D Convection.
|
[145]
|
Einstein, A. and Grossman, M. (1913) Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Zeitschrift für Mathematik und Physik, 62, 225-261.
|
[146]
|
Einstein, A. and Grossman, M. (1915) Die Feldgleichungen der Gravitation. Sitzungs-berichte der Königlich Preussischen Akademie der Wissenschaften (Berlin), 844-846.
|
[147]
|
Hilbert, D. (1915) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 395.
|
[148]
|
Janssen, M. and Renn, J. (2015) Arch and Scaffold: How Einstein Found His Field Equations. Physics Today, 68, 30-36. https://doi.org/10.1063/pt.3.2979
|
[149]
|
Einstein, A. (1917) Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 142-152.
|
[150]
|
Schwarzschild, K. (1916) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 189-196.
|
[151]
|
Kottler, F. (1918) Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen der Physik, 361, 401-462. https://doi.org/10.1002/andp.19183611402
|
[152]
|
Sexl, R.U. and Urbantke, H.K. (2002) Gravitation und Kosmologie. Eine Einführung in die Allgemeine Relativitätstheorie.
|
[153]
|
Rebhan, E. (2012) Theoretische Physik: Relativitätstheorie und Kosmologie.
|
[154]
|
Weinberg, S. and Dicke, R.H. (1973) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. American Journal of Physics, 41, 598-599. https://doi.org/10.1119/1.1987308
|
[155]
|
Wilson, O.C. (1939) Possible Applications of Supernovae to the Study of the Nebular Red Shifts. The Astrophysical Journal, 90, 634. https://doi.org/10.1086/144134
|
[156]
|
Rust, B.W. (1974) The Use of Supernovae Light Curves for Testing the Expansion Hypothesis and Other Cosmological Relations. PhD Thesis, Oak Ridge National Laboratory.
|
[157]
|
Leibundgut, B., Schommer, R., Phillips, M., Riess, A., Schmidt, B., Spyromilio, J., et al. (1996) Time Dilation in the Light Curve of the Distant Type Ia Supernova SN 1995k. The Astrophysical Journal, 466, L21-L24. https://doi.org/10.1086/310164
|
[158]
|
Goldhaber, G., Groom, D.E., Kim, A., Aldering, G., Astier, P., Conley, A., et al. (2001) Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves. The Astrophysical Journal, 558, 359-368. https://doi.org/10.1086/322460
|
[159]
|
Foley, R.J., Filippenko, A.V., Leonard, D.C., Riess, A.G., Nugent, P. and Perlmutter, S. (2005) A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex. The Astrophysical Journal, 626, L11-L14. https://doi.org/10.1086/431241
|
[160]
|
Segal, I.E. (1997) Cosmic Time Dilation. The Astrophysical Journal, 482, L115-L117. https://doi.org/10.1086/310698
|
[161]
|
(2006) First Crisis in Cosmology Conference. American Institute of Physics Conference Series, Vol. 822.
|
[162]
|
Holushko, H. (2012) Tired Light and Type Ia Supernovae Observations.
|
[163]
|
Taub, A.H. (1951) Empty Space-Times Admitting a Three Parameter Group of Motions. The Annals of Mathematics, 53, 472-490. https://doi.org/10.2307/1969567
|
[164]
|
Newman, E., Tamburino, L. and Unti, T. (1963) Empty-Space Generalization of the Schwarzschild Metric. Journal of Mathematical Physics, 4, 915-923. https://doi.org/10.1063/1.1704018
|
[165]
|
Vincenzi, M., Brout, D., Armstrong, P., Popovic, B., Taylor, G., Acevedo, M., et al. (2024) The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties.
|
[166]
|
Taylor, J. (1997) Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd Edition, University Science Books.
|
[167]
|
Bardoux, Y., Caldarelli, M.M. and Charmousis, C. (2014) Integrability in Conformally Coupled Gravity: Taub-Nut Spacetimes and Rotating Black Holes. Journal of High Energy Physics, 2014, Article No. 39. https://doi.org/10.1007/jhep05(2014)039
|
[168]
|
Abbasvandi, N., Tavakoli, M. and Mann, R.B. (2021) Thermodynamics of Dyonic NUT Charged Black Holes with Entropy as Noether Charge. Journal of High Energy Physics, 2021, Article No. 152. https://doi.org/10.1007/jhep08(2021)152
|
[169]
|
Mann, R.B., Pando Zayas, L.A. and Park, M. (2021) Complement to Thermodynamics of Dyonic Taub-NUT-Ads Spacetime. Journal of High Energy Physics, 2021, Article No. 39. https://doi.org/10.1007/jhep03(2021)039
|
[170]
|
Miller, J.G. (1973) Global Analysis of the Kerr-Taub-NUT Metric. Journal of Mathematical Physics, 14, 486-494. https://doi.org/10.1063/1.1666343
|
[171]
|
Clarkson, C. and Maartens, R. (2010) Inhomogeneity and the Foundations of Concordance Cosmology. Classical and Quantum Gravity, 27, Article ID: 124008. https://doi.org/10.1088/0264-9381/27/12/124008
|
[172]
|
Zeng, D.-F. and Zhao, H.-J. (2005) Does Standard Cosmology Express Cosmological Principle Faithfully?
|
[173]
|
Zeng, D.-F. and Gao, Y.-H. (2005) An Ignored Assumption of ΛCDM Cosmology and an Old Question: Do We Live on the “Center” of the Universe?
|
[174]
|
Zeng, D.-F. and Gao, Y.-H. (2005) A Question about Standard Cosmology and Extremely Dense Stars’ Collapsing.
|
[175]
|
Belgacem, E., Dirian, Y., Foffa, S. and Maggiore, M. (2018) Nonlocal Gravity. Conceptual Aspects and Cosmological Predictions. Journal of Cosmology and Astroparticle Physics, 2018, Article No. 2. https://doi.org/10.1088/1475-7516/2018/03/002
|
[176]
|
Wondrak, M.F., Bleicher, M., Nicolini, P. (2017) Black Holes and High Energy Physics: From Astrophysics to Large Extra Dimensions.
|
[177]
|
Guillaume, C. (1896) La température de l’espace. La Nature, 24, 234.
|
[178]
|
Assis, A.K.T. and Neves, M.C.D. (2020) Complete and Commented Translation of Guillaume’s 1896 Paper on the Temperature of Space. American Journal of Physics, 88, 1140-1144. https://doi.org/10.1119/10.0001775
|
[179]
|
Eddington, A.S. (1988) The Internal Constitution of the Stars. Cambridge University Press. https://doi.org/10.1017/cbo9780511600005
|
[180]
|
Regener, E. (1933) Der Energiestrom der Ultrastrahlung. Zeitschrift für Physik, 80, 666-669. https://doi.org/10.1007/bf01335703
|
[181]
|
Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920. https://doi.org/10.1088/0004-637x/707/2/916
|
[182]
|
Nernst, W. (1938) Die Strahlungstemperatur des Universums. Annalen der Physik, 424, 44-48. https://doi.org/10.1002/andp.19384240107
|
[183]
|
Finlay-Freundlich, E. (1954) Red-Shifts in the Spectra of Celestial Bodies. Proceedings of the Physical Society. Section A, 67, 192-193. https://doi.org/10.1088/0370-1298/67/2/114
|
[184]
|
Finlay-Freundlich, E. (1953) Letters to the Editor: On the Interpretation of Freundlich’s Red-Shift Formula. Nachrichten der Akademie der Wissenschaften in Göttingen Mathematisch-Physikalische Klasse IIa 7, 95.
|
[185]
|
Born, M. (1954) On the Interpretation of Freundlich’s Red-Shift Formula. Proceedings of the Physical Society. Section A, 67, 193-194. https://doi.org/10.1088/0370-1298/67/2/115
|
[186]
|
Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142, 419-421. https://doi.org/10.1086/148307
|
[187]
|
Kellermann, K.I. (2019) Radio Source Counts, Type 1a SN, and the Steady State Universe Revisted. In: American Astronomical Society Meeting Abstracts #233, American Astronomical Society Meeting Abstracts, Vol. 233, 135.
|
[188]
|
Alpher, R.A. and Herman, R. (1948) Evolution of the Universe. Nature, 162, 774-775. https://doi.org/10.1038/162774b0
|
[189]
|
Alpher, R.A., Bethe, H. and Gamow, G. (1948) The Origin of Chemical Elements. Physical Review, 73, 803-804. https://doi.org/10.1103/physrev.73.803
|
[190]
|
Gamow, G. (1953) Expanding Universe and, the Origin of Galaxies. Danske Videnskabernes Selskab, 27, 10.
|
[191]
|
Gamow, G. (1961) The Creation of the Universe.
|
[192]
|
Layzer, D. and Hively, R. (1973) Origin of the Microwave Background. The Astrophysical Journal, 179, 361-370. https://doi.org/10.1086/151874
|
[193]
|
Rees, M.J. (1978) Origin of Pregalactic Microwave Background. Nature, 275, 35-37. https://doi.org/10.1038/275035a0
|
[194]
|
Carr, B.J. (1981) Pregalactic Stars and the Origin of the Microwave Background. Monthly Notices of the Royal Astronomical Society, 195, 669-684. https://doi.org/10.1093/mnras/195.3.669
|
[195]
|
Wright, E.L. (1982) Thermalization of Starlight by Elongated Grains—Could the Microwave Background Have Been Produced by Stars. The Astrophysical Journal, 255, 401-407. https://doi.org/10.1086/159840
|
[196]
|
Assis, A.K.T. (1993) A Steady-State Cosmology. In: Arp, H.C., Keys, C.R. and Rudnicki, K., Eds., Progress in New Cosmologies: Beyond the Big Bang, Springer, 153.
|
[197]
|
Olbers, H. (1926) Astronomisches Jahrbuch Für Das Jahr 1826. Königliche Akademie der Wissenschaften, 110.
|
[198]
|
de Sitter, W. (1917) On the Relativity of Inertia. Remarks Concerning Einstein’s Latest Hypothesis. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 19, 1217-1225.
|
[199]
|
Lense, J. (1917) Das Newtonsche Gesetz in Nichteuklidischen Räumen. Astronomische Nachrichten, 205, 241-248. https://doi.org/10.1002/asna.19172051602
|
[200]
|
Lanczos, K. (1924) Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie. Zeitschrift für Physik, 21, 73-110. https://doi.org/10.1007/bf01328251
|
[201]
|
Nernst, W. (1937) Weitere Prüfung der Annahme eines stationären Zustandes im Weltall. Zeitschrift für Physik, 106, 633-661. https://doi.org/10.1007/bf01339902
|
[202]
|
Kragh, H. (2017) Is the Universe Expanding? Fritz Zwicky and Early Tired-Light Hypotheses. Journal of Astronomical History and Heritage, 20, 2-12. https://doi.org/10.3724/sp.j.1440-2807.2017.01.01
|
[203]
|
Kaiser, F. (1934) Zur Deutung der Spektrallinien-Rotverschiebung in den Spiralnebeln und Nebelhaufen. Astronomische Nachrichten, 252, 11-12. https://doi.org/10.1002/asna.19342520104
|
[204]
|
Zwicky, F. (1929) On the Redshift of Spectral Lines through Interstellar Space. Proceedings of the National Academy of Sciences, 15, 773-779. https://doi.org/10.1073/pnas.15.10.773
|
[205]
|
Zwicky, F. (1933) Die Rotverschiebung von Extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.
|
[206]
|
Hubble, E. (1936) Effects of Red Shifts on the Distribution of Nebulae. The Astrophysical Journal, 84, 517. https://doi.org/10.1086/143782
|
[207]
|
Born, M. (1953) Nachrichten der Akademie der Wissenschaften in Göttingen Mathematisch-Physikalische Klasse IIa. Vandenhoeck & Ruprecht, 7, 102.
|
[208]
|
Pecker, J.C., Roberts, A.P. and Vigier, J.P. (1972) Non-Velocity Redshifts and Photon-Photon Interactions. Nature, 237, 227-229. https://doi.org/10.1038/237227a0
|
[209]
|
Jaakkola, T., Moles, M., Vigier, J.P., Pecker, J.C. and Yourgrau, W. (1975) Cosmological Implications of Anomalous Redshifts? A Possible Working Hypothesis. Foundations of Physics, 5, 257-269. https://doi.org/10.1007/bf00717442
|
[210]
|
Maric, Z., Moles, M. and Vigier, J.P. (1976) Possible Measurable Consequences of the Existence of a New Anomalous Redshift Cause on the Shape of Symmetrical Spectral Lines. Astronomy and Astrophysics, 53, 191-196.
|
[211]
|
Jaakkola, T., Moles, M. and Vigier, J. (1979) Empirical Status in Cosmology and the Problem of the Nature of Redshifts. Astronomische Nachrichten, 300, 229-238. https://doi.org/10.1002/asna.19793000503
|
[212]
|
Chow, T.L. (1981) Non-Doppler Redshifts and Energy Decay of Elementary Particles. Lettere Al Nuovo Cimento Series 2, 32, 351-352. https://doi.org/10.1007/bf02743621
|
[213]
|
Laviolette, P.A. (1986) Is the Universe Really Expanding? The Astrophysical Journal, 301, 544. https://doi.org/10.1086/163922
|
[214]
|
Reber, G. (1986) Intergalactic Plasma. IEEE Transactions on Plasma Science, 14, 678-682. https://doi.org/10.1109/tps.1986.4316618
|
[215]
|
Crawford, D.F. (1987) Diffuse Background X Rays and the Density of the Intergalactic Medium. Australian Journal of Physics, 40, 459-464. https://doi.org/10.1071/ph870459
|
[216]
|
Kierein, J.W. (1988) A Criticism of Big Bang Cosmological Models Based on Interpretation of the Red Shift. Laser and Particle Beams, 6, 453-456. https://doi.org/10.1017/s0263034600005383
|
[217]
|
Marmet, P. and Reber, G. (1989) Cosmic Matter and the Nonexpanding Universe. IEEE Transactions on Plasma Science, 17, 264-269. https://doi.org/10.1109/27.24634
|
[218]
|
Arp, H.C., Burbidge, G., Hoyle, F., Narlikar, J.V. and Wickramasinghe, N.C. (1990) The Extragalactic Universe: An Alternative View. Nature, 346, 807-812. https://doi.org/10.1038/346807a0
|
[219]
|
Vigier, J. (1990) Evidence for Nonzero Mass Photons Associated with a Vacuum-Induced Dissipative Red-Shift Mechanism. IEEE Transactions on Plasma Science, 18, 64-72. https://doi.org/10.1109/27.45506
|
[220]
|
Bunn, E.F. and Hogg, D.W. (2009) The Kinematic Origin of the Cosmological Redshift. American Journal of Physics, 77, 688-694. https://doi.org/10.1119/1.3129103
|
[221]
|
Sanejouand, Y. (2022) A Framework for the Next Generation of Stationary Cosmological Models. International Journal of Modern Physics D, 31, Article ID: 2250084. https://doi.org/10.1142/s0218271822500845
|
[222]
|
Ostermann, P. (2002) A Stationary Universe and the Basics of Relativity Theory.
|
[223]
|
Ostermann, P. (2003) The Concordance Model—A Heuristic Approach from a Station-Ary Universe.
|
[224]
|
Ostermann, P. (2004) A Stationary Universe and the Basics of Relativity Theory.
|
[225]
|
Ostermann, P. (2014) SUM: Model of a Stationary Background Universe behind Our Cosmos.
|