Evaluation of Groundwater Suitability for Domestic and Irrigational Purposes: A Case Study from Mingoa River Basin, Yaounde, Cameroon

Abstract

A baseline study involving analyses of subsurface water samples from the Mingoa river basin (longitude: 11°30′E; latitude: 3°52′N) in migmatitic complex in Yaounde Cameroon (central Africa) was carried out to assess their suitability for drinking, domestic and agricultural purposes. Study results show that pH is ranged between 5.1≤ pH ≤ 5.8 and then, induces acidic waters. Groundwater samples are generally characterized by low conductivity values, of which 100% are within the range (55 ≤ EC ≤ 1500 μS/cm). The mean values of the major cations (Ca2+, Mg2+, Na+, K+) and anions (SO42– , Cl, HCO3 ) are all within the World Health Organization (WHO) standards. Two of the springs sampled have nitrate (NO3 ) contamination. Even though contamination and acidic waters exist in some of the springs, the majority of the springs are excellent for agricultural and domestic purposes. Assessment of the groundwater for agricultural irrigation revealed two main categories. These are low salinity-low sodicity (C1-S1) and medium salinity-low sodicity (C2-S1), using the US Salinity Laboratory (USSL) classification scheme. As much as all of the samples plotted in the “excellent to good” and “good to permissible” categories on the Wilcox diagram. The groundwater in the study area may therefore be regarded as good for irrigation activities. The major identifiable geochemical processes responsible for the evolution of the various ions are mineral weathering, chemical reactions and anthropogenic activities.

Share and Cite:

Youmbi Jean Ghislain, T. , Roger, F. , Joseph, W. , Georges Emmanuel, E. and Marsily Ghislain, D. (2012) Evaluation of Groundwater Suitability for Domestic and Irrigational Purposes: A Case Study from Mingoa River Basin, Yaounde, Cameroon. Journal of Water Resource and Protection, 4, 285-293. doi: 10.4236/jwarp.2012.45031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Vasanthavigar, K. Srinivasamoorthy, K. Vijayaragavan, R. Rajiv Ganthi, S. Chidambaram, V. S. Sarama, P. Anandhan, R. Manivannan and S. Vasudevan, “Application of Water Quality Index for Groundwater Quality Assessment: Thirumanimuttar Sub-Basin, Tamilnadu, India,” Environmental Monitoring and Assessment, Vol. 171, No. 1-4, 2010, pp. 595-609.
[2] P. N. Rajankar, S. R. Gulhane, D. H. Tambekar, D. S. Ramteke and S. R. Wate, “Water Quality Assessment of Groundwater Resources in Nagpur Region (India) Based on WQI,” E-Journal of Chemistry, Vol. 6, No. 3, 2009, pp. 905-908. doi:10.1155/2009/971242
[3] P. K. Goel, “Water Pollution—Causes, Effects and Control,” New Age Int. (P) Ltd., New Delhi, 2000.
[4] B. A. Raji and S. A. Alagbe, “Hydrochemical Facies in Parts of the Nigerian Basement Complex,” Environmental Geology, Vol. 29, No. 1-2, 1997, pp. 46-49. doi:10.1007/s002540050102
[5] S. Y. Acheampong and J. W. Hess, “Hydeogeological and Hydrochemical Framework of the Shallow Groundwater System in the Southern Voltaian Sedimentary Basin, Ghana,” Hydrogeology Journal, Vol. 6, No. 4, 1998, pp. 527-537.
[6] A. I. Olayinka, A. F. Abimbola, R. A. Isibor and A. B. Rafiu, “A Geoelectric Hydrochemical Investigation of Shallow Groundwater Occurrence in Ibadan, SouthWestern Nigeria,” Environmental Geology, Vol. 37, No. 1-2, 1999, pp. 31-37. doi:10.1007/s002540050357
[7] S. Foster, J. Chilton, M. Moench, F. Cardy and M. Schiffer, “Groundwater in Rural Development,” WTP 463, 2000.
[8] A. M. MacDonald, J. Davies and B. E. O. Dochartaigh, “Simple Methods for Assessing Groundwater Resources in Low Permeability Areas in Africa,” BGS commissioned report, 2002, 71 p.
[9] Y. S. Rao, T. V. K. Reddy and P. T. Nayudu, “Groundwater Quality in the Niva River Basin, Chittoor District, Andhra Pradesh, India,” Environmental Geology, Vol. 31, No. 1, 1997, pp. 56-63. doi:10.1007/s002540050193
[10] T. Subramani, L. Elango and S. R. Damodarasamy, “Groundwater Quality and Its Suitability for Drinking and Agricultural Use in Chithar River Basin, Tamil Nadu, India,” Environmental Geology, Vol. 47, No. 8, 2005, pp. 1099-1110. doi:10.1007/s00254-005-1243-0
[11] R. Umar, M. M. A. Khan and A. Absar, “Groundwater Hydrochemistry of a Sugarcane Cultivation Belt in Parts of Muzaffarnagar District, Uttar Pradesh, India,” Environmental Geology, Vol. 49, No. 7, 2006, pp. 999-1008. doi:10.1007/s00254-005-0138-4
[12] K. Pandian, and K. Sankar, “Hydrogeochemistry and Groundwater Quality in the Vaippar River Basin, Tamil Nadu,” Journal of the Geological Society of India, Vol. 69, 2007, pp. 970-982.
[13] N. J. Raju, “Hydrogeochemical Parameters for Assessment of Groundwater Quality in the Upper Gunjanaeru River Basin, Cuddapah District, Andhra Pradesh,” South India Environmental Geology, Vol. 52, 2007, pp. 1067-1074. doi:10.1007/s00254-006-0546-0
[14] INS (Institut National de la Statistique), “Annuaire Statistique du Cameroun,” 2010, 414 p. http://www.statistics-cameroon.org/news.php
[15] UNDP (United Nations for Development Program), “Urban Agriculture: Food, Jobs and Sustainable Cities,” UNDP, New York, 1996.
[16] J. P. Nzenti, P. Barbey, J. Macaudière and D. Soba, “Origin et Evolution of the Late Precambrian High Grade Yaounde Yaoundé Gneiss (Cameroun),” Precambrian Research, Vol. 38, No. 2, 1988, pp. 91-109. doi:10.1016/0301-9268(88)90086-1
[17] Onguene Mala, “Différenciations Pédologiques dans la Région de Yaoundé (Cameroun): Transformation d’un sol Rouge Ferrallitique en sol à Horizon Jaune en Relation avec l’Evolution du Modelé,” Thèse Doct. Univ. Paris VI, 1993, 254 p.
[18] LESEAU (Laboratoire Environnement et Sciences de l’Eau), “Ma?trise de l’Assainissement dans un Ecosystème Urbain à Yaoundé au Cameroun et Impacts sur la Santé des Enfants Agés de Moins de Cinq Ans,” Rapport Final de Recherche Phase I, 2005, 207 p.
[19] APHA (American Public Health Association), “Standard Methods for Examination of Water and Waste Water,” American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington DC, USA, 1995.
[20] USSL (United States Salinity Labortory), “Diagnosis and Improvements of Saline and Alkali Soils,” US Department of Agricultural Soils, US Department of Agricultural Hand Book 60, Washington, 1954.
[21] L. V. Wilcox, “Classification and Use of Irrigation Waters,” USDA, Circular 969, Washington, 1955.
[22] A. Nono, J. D. H. Likeng, H. Wabo, J. G. Tabue Youmbi and S. Biaya, “Influence de la Nature Lithologique et des Structures Géologiques sur la Qualité et la Dynamique des eaux Souterraines dans les Hauts Plateaux de l’Ouest-Cameroun,” Journal of Biological Chemistry Science, Vol. 3, No. 2, 2009, pp. 218-239.
[23] C. Grimaldi, E. Fritsch and R. Boulet, “Composition Chimique des eaux de Nappe et Evolution d’un Matériau Ferrallitique en Présence du Système Muscovite— Kaolinite—Quartz,” Compte rendus de L’Académie des Sciences de Paris, Série II, Vol. 319, 1994, pp. 13831389.
[24] J. P. Faillat and C. Drogue, “Différenciation Hydrochimique des Nappes Superposées d’Altérites et de Fissure en Socle Granitique,” Journal of Science Hydrologiques, Vol. 38, No. 3, 1993, pp. 215-229.
[25] J. D. Hem, “Study and Interpretation of the Chemical Characteristics of Natural Water,” 3rd Edition, Scientific, Jodhpur, 1985, p. 2254.
[26] E. Lakshmanan, K. Kannan and M. SenthilKumar, “Major Ion Chemistry and Identification of Hydrogeochemical Process of Groundwater in Part of Kancheepuram District, Tamilnadu, India,” Journal Environmental Geosciences, Vol. 10, No. 4, 2003, pp. 157-166. doi:10.1306/eg100403011
[27] A. Savadogo Nindaoua, “Géologie et Hydrogéologie du Socle Cristallin de Haute Volta. Etude Régionale du Bassin versant de la Sissili,” Doct. Etat Faculté des Sciences. Grenoble, Université des Sciences Techniques et Médicales de Grenoble I, 1984, 349 p.
[28] K. Srinivasamoorthy, S. Chidambaram and M. Vasanthavigar, “Geochemistry of Fluorides in Groundwater: Salem District, Tamilnadu, India,” Journal of Environmental Hydrology, Vol. 1, 2008, pp. 16-25.
[29] S. Diouf, “Hydrogéologie en Zone de Socle Cristallin et Cristallophylien du Sénégal oriental: Application de la Méthode Electrique 1D et 2D à la Localisation et à la Caractérisation des Aquifères du Batholite de Saraya et ses Environs,” Thèse Doct. 3ème cycle, Univ. Cheikh Anta Diop, Dakar, 1999, 160 p.
[30] J. G. Tabué Youmbi, D. Ntamack, R. Feumba, E. Ngnikam, J. Wethe and E. Tanawa, “Vulnérabilité des eaux Souterraines et Périmètres de Protection dans un Bassin versant de la Mingoa (Yaoundé, Cameroun),” Revue de l’Université de Moncton, Vol. 40, No. 2, 2009, pp. 71-96.
[31] P. C. Mishra, P. C. Behera and R. K. Patel, “Contamination of Water Due to Major Industries and Open Refuse Dumping in the Steel City of Orissa—A Case Study,” Journal of Environmental Science & Engineering, Vol. 47, No. 2, 2005, pp. 141-154.
[32] T. Venugopal, L. Giridharan and M. Jayaprakash, “Application of Chemometric Analysis for Identifying Pollution Sources: A Case Study on the River Adyar, India,” Marine and Freshwater Research, Vol. 60, No. 12, 2009, pp. 1254-1264. doi:10.1071/MF08178
[33] A. M. Piper, “A Graphic Procedure in the Geochemical Interpretation of Water Analysis,” USGS Ground Water Note, No. 12, 1953, 63 p.
[34] V. Singh and U. C. Singh, “Assessment of Groundwater Quality of Parts of Gwalior (India) for Agricultural Purposes,” Indian Journal of Science and Technology, Vol. 1, No. 4, 2008, pp. 1-5.
[35] L. V. Wilcox, “Classification and Use of Irrigation Waters,” USDA, Circular 969, Washington DC, 1955.
[36] D. K. Todd, “Ground Water Hydrology,” Wiley, New York, 1980.
[37] J. D. Hem, “Study and Interpretation of the Chemical Characteristics of Natural Waters,” Book 2254, 3rd Edition, Scientific Publishers, Jodhpur, 1991.
[38] N. Subba Rao, “Seasonal Variation of Groundwater Quality in a Part of Guntur district, Andhra Pradesh, India,” Environmental Geology, Vol. 49, No. 3, 2006, pp. 413-429. doi:10.1007/s00254-005-0089-9
[39] L. V. Wilcox, “The Quality of Water for Irrigation Use,” US Department of Agriculture, Technical Bulletin, Vol. 962, No. 40, U.S. Department of Agriculture, Washington DC, 1948.
[40] M. Kumar, K. Kumari, A. L. Ramanathan and R Saxena, “A Comparative Evaluation of Groundwater Suitability for Irrigation and Drinking Purposes in Two Intensively Cultivated Districts of Punjab, India,” Environmental Geology, Vol. 53, No. 3, 2007, pp. 553-574. doi:10.1007/s00254-007-0672-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.