Low-Temperature Synthesis of Nanocrystalline Mn0.2Ni0.8Fe2O4 by Oxalate Precursor Route

Abstract

Manganese nickel ferrite (Mn0.2Ni0.8Fe2O4) powder was synthesized through oxalate precursor route. The effect of annealing temperature (400 - 1100) on the formation, crystalline size, morphology and magnetic properties was systematically studied. The resultant powders were investigated by thermal analyzer (TG-DTG-DSC), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Based on thermal analysis results, the oxalate mixture decomposed thermally in multisteps weight loss up to about 680. XRD indicated that Mn0.2Ni0.8Fe2O4 formed at much lower annealing temperature (≤400) but contained α-Fe2O3 impurity. The hematite phase decreased by increasing the annealing temperature. The lattice parameters were increased with increasing annealing temperature up to 1000. The average crystalline size increased by increasing the annealing temperature. Single well crystalline ferrite was obtained at 800with crystallite size about 109 nm. The saturation magnetization of the ferrites powders continuously increased with the increase in annealing temperature. Maximum saturation magnetization 48.2 emu/g was achieved for the formed Mn0.2Ni0.8Fe2O4 phase at annealing temperature 1100.

Share and Cite:

M. Hessien, Z. Zaki and A. Mohsen, "Low-Temperature Synthesis of Nanocrystalline Mn0.2Ni0.8Fe2O4 by Oxalate Precursor Route," Advances in Materials Physics and Chemistry, Vol. 3 No. 1A, 2013, pp. 1-7. doi: 10.4236/ampc.2013.31A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Popa, P. Bruna, D. Crespo and J. M. C. Moreno, “Single Phase MnFe2O4 Powders Obtained by the Polymerized Complex Method,” Journal of the American Ceramic Society, Vol. 91, No. 8, 2008, pp. 2488-2494. doi:10.1111/j.1551-2916.2008.02501.x
[2] S. Son, M. Taheri, E. Carpenter, V. G. Harris and M. E. McHenry, “Synthesis of Ferrite and Nickel Ferrite Nanoparticles Using Radio-Frequency Thermal Plasma Torch,” Journal of Applied Physics, Vol. 91, No. 10, 2002, pp. 7589-7591. doi:10.1063/1.1452705
[3] S. Maensiri, C. Masingboon, B. Boonchom and S. Seraphin, “A Simple Route to Synthesize Nickel Ferrite (NiFe2O4) Nanoparticles Using Egg White,” Scripta Materialia, Vol. 56, No. 9, 2007, pp. 797-800. doi:10.1016/j.scriptamat.2006.09.033
[4] M. Sugimoto, “The Past, Present and Future of Ferrites,” Journal of the American Ceramic Society, Vol. 82, No. 2, 1999, pp. 269-280. doi:10.1111/j.1551-2916.1999.tb20058.x
[5] H. Yang, L. Zhao, X. Yang, L. Shen, L. Yu, W. Sun, Y. Yan, W. Wang and S. Feng, “The Synthesis and the Magnetic Properties of Nd2O3-Doped Ni-Mn Ferrites Nanoparticles,” Journal of Magnetism and Magnetic Materials, Vol. 271, No. 2-3, 2004, pp. 230-236. doi:10.1016/j.jmmm.2003.09.030
[6] M. M. Hessien, M. M. Rashad, K. El-Barawy and I. A. Ibrahim, “Influence of Manganese Substitution and Annealing Temperature on the Formation, Microstructure and Magnetic Properties of Mn-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 9, 2008, pp. 1615-1621. doi:10.1016/j.jmmm.2008.01.025
[7] J. A. Toledo, M. A. Valenzuela, P. Bosch, H. Armendariz, A. Montoya, N. Nava and A. Vazquez, “Effect of AI3+ Introduction into Hydrothermally Prepared ZnFe2O4,” Applied Catalysis A: General, Vol. 198, No. 1-2, 2000, pp. 235-245. doi:10.1016/S0926-860X(99)00514-1
[8] N. M. Deraz and M. M. Hessien, “Structural and Magnetic Properties of Pure and Doped Nanocrystalline Cadmium Ferrite,” Journal of Alloys and Compounds, Vol. 475, No. 1-2, 2009, pp. 832-839. doi:10.1016/j.jallcom.2008.08.034
[9] S. Kumar, R. Kumar, S. K. Sharma, V. R. Reddy, A. Banerjee and Alimuddin, “Temperature-Dependent Mössbauer and Dielectric Studies of Mg0.95Mn0.05Fe1.0Ti1.0O4,” Solid State Communications, Vol. 142, No. 12, 2007, pp. 706-709. doi:10.1016/j.ssc.2007.04.019
[10] C. B. Kolekar, A. Y. Lipare, B. P. Ladganokar, P. N. Vasambekar and A. S. Vaingankar, “The Effect of Gd3+ and Cd2+ Substitution on Magnetization of Copper Ferrite,” Journal of Magnetism and Magnetic Materials, Vol. 247, No. 2, 2002, pp. 142-146. doi:10.1016/S0304-8853(01)00974-X
[11] X. Qi, J. Zhou, Z. Yue, Z. Gui and L. Li, “Effect of Mn Substitution on the Magnetic Properties of MgCuZn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 251, No. 3, 2002, pp. 316-322. doi:10.1016/S0304-8853(02)00854-5
[12] M. Naeem, N. Abbas Shah, I. H. Gul and A. Maqsood, “Structural, Electrical and Magnetic Characterization of Ni-Mg Spinel Ferrites,” Journal of Alloys and Compounds, Vol. 487, No. 1-2, 2009, pp. 739-743. doi:10.1016/j.jallcom.2009.08.057
[13] X. Hou, J. Feng, X. Xu, and M. Zhang, “Synthesis and Characterizations of Spinel MnFe2O4 Nanorod by Seed- Hydrothermal Route,” Journal of Alloys and Compounds, Vol. 491, No. 1-2, 2010, pp. 258-263. doi:10.1016/j.jallcom.2009.10.029
[14] L. Zhen, K. He, C. Y. Xu and W. Z. Shao, “Synthesis and Characterization of Single-Crystalline MnFe2O4 Nanorods via a Surfactant-Free Hydrothermal Route,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 21, 2008, pp. 2672-2675. doi:10.1016/j.jmmm.2008.05.034
[15] Y. W. Ju, J. H. Park, H. R. Jung, S. J. Cho and W. J. Lee, “Electrospun MnFe2O4 Nanofibers: Preparation and Morphology,” Composites Science and Technology, Vol. 68, No. 7-8, 2008, pp. 1704-1709. doi:10.1016/j.compscitech.2008.02.015
[16] S. Gubbala, H. Nathani, K. Koizol and R. D. K. Misra, “Magnetic Properties of Nanocrystalline Ni-Zn, Zn-Mn, and Ni-Mn Ferrites Synthesized by Reverse Micelle Technique,” Physica B: Condensed Matter, Vol. 348, No. 1-4, 2004, pp. 317-328. doi:10.1016/j.physb.2003.12.017
[17] L. Zhao, W. Xu, H. Yang and L. Yu, “Effect of Nd Ion on the Magnetic Properties of Ni-Mn Ferrite Nanocrystal,” Current Applied Physics, Vol. 8, No. 1, 2008, pp. 36-41. doi:10.1016/j.cap.2007.04.011
[18] A. S. Albuquerque, J. D. Ardisson and W. A. A. Macedo, “Nanosized Powders of NiZn Ferrite: Synthesis, Structure, and Magnetism,” Journal of Applied Physics, Vol. 87, No. 9, 2000, pp. 4352-4357. doi:10.1063/1.373077
[19] P. C. Fannin, A. Slawska-Waniewska, P. Didukh, A. Giannitoics and S. W. Charles, “Dynamic Properties of a System of Cobalt Nanoparticles,” The European Physical Journal Applied Physics, Vol. 17, No. 1, 2002, pp. 3-9. doi:10.1051/epjap:2001012
[20] M. H. Sousa, F. A. Tourinho, J. Depeyrot, G. J. Da Silva and M. C. F. Lara, “New Electric Double-Layered Magnetic Fluids Based on Copper, Nickel, and Zinc Ferrite Nanostructures,” The Journal of Physical Chemistry B, Vol. 105, No. 7, 2001, pp. 1169-1175. doi:10.1021/jp0028195
[21] P. J. van der Zaag, P. J. van der Valk and M. T. Rekveldt, “A Domain Size Effect in Magnetic Hystersis of NiZnFerrite,” Applied Physics Letters, Vol. 69, No. 19, 1996, p. 2927. doi:10.1063/1.117326
[22] P. C. Fannin, S. W. Charles and J. L. Dormann, “Field Dependence of the Dynamic Properties of Colloidal Suspensions of Mn0.66Zn0.34Fe2O4 and Ni0.5Zn0.5Fe2O4 Particles,” Journal of Magnetism and Magnetic Materials, Vol. 201, No. 1-3, 1999, pp. 98-101. doi:10.1016/S0304-8853(99)00067-0
[23] M. Radwan, M. M. Rashad and M. M. Hessien, “Synthesis and Characterization of Barium Hexaferrite Nanoparticles,” Journal of Materials Processing Technology, Vol. 181, No. 1-3, 2007, pp. 106-109. doi:10.1016/j.jmatprotec.2006.03.015
[24] H. Sato and T. Umeda, “Grain Growth of Strontium Ferrite Crystallized from Amorphous Phases,” Journal of Materials Transactions, Vol. 34, No. 1, 1993, pp. 76-81.
[25] P. Hu, H. Yang, D. Pan, H. Wang, J. Tian, S. Zhang, X. Wang and A. A. Volinsky, “Heat Treatment Effects on Microstructure and Magnetic Properties of Mn-Zn Ferrite Powders,” Journal of Magnetism and Magnetic Materials, Vol. 322, No. 1, 2010, pp. 173-177. |doi:10.1016/j.jmmm.2009.09.002
[26] J. Huo and M. Wei, “Characterization and Magnetic Properties of Nanocrystalline Nickel Ferrite Synthesized by Hydrothermal Method,” Materials Letters, Vol. 63, No. 13-14, 2009, pp. 1183-1184. doi:10.1016/j.matlet.2009.02.024
[27] L. Wang, J. Ren, Y. Wang, X. Liu and Y. Wang, “Controlled Synthesis of Magnetic Spinel-Type Nickel Ferrite Nanoparticles by the Interface Reaction and Hydrothermal Crystallization,” Journal of Alloys and Compounds, Vol. 490, No. 1-2, 2010, pp. 656-660. doi:10.1016/j.jallcom.2009.10.131
[28] J. Ding, W. F. Miao, R. Street, P. G. McCormick and R. Street, “High-Coercivity Ferrite Magnets Prepared by Mechanical Alloying,” Journal of Alloys and Compounds, Vol. 281, No. 1, 1998, pp. 32-36. doi:10.1016/S0925-8388(98)00766-X
[29] N. Y. Mostafa, M. M. Hessien and A. A. Shaltout, “Hydrothermal Synthesis and Characterizations of Ti Substituted Mn-Ferrites,” Journal of Alloys and Compounds, Vol. 529, 2012, pp. 29-33. doi:10.1016/j.jallcom.2012.03.060
[30] P. P. Sarangi, S. R. Vadera, M. K. Patra and N. N. Ghosh, “Synthesis and Characterization of Pure Single Phase Ni- Zn Ferrite Nanopowders by Oxalate Based Precursor Method,” Powder Technology, Vol. 203, No. 2, 2010, pp. 348-353. doi:10.1016/j.powtec.2010.05.027
[31] H.-F. Yu and S.-W. Yang, “Formation of Crystalline MnFe2O4 Powder by Flame-Combusting Freeze-Dried Citrate Precursors,” Journal of Alloys and Compounds, Vol. 394, No. 1-2, 2005, pp. 286-291. doi:10.1016/j.jallcom.2004.11.011
[32] N. S. Gajbhiye and G. Balaji, “Synthesis, Reactivity, and Cations Inversion Studies of Nanocrystalline MnFe2O4 Particles,” Thermochemica Acta, Vol. 385, No. 1-2, 2002, pp. 143-151. doi:10.1016/S0040-6031(01)00714-6
[33] A. C. F. M. Costa, E. Tortella, M. R. Morelli and R. H. G. A. Kiminami, “Synthesis, Microstructure and Magnetic Properties of Ni-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 256, No. 1-3, 2003, pp. 174-182. doi:10.1016/S0304-8853(02)00449-3
[34] A. K. M. Akther Hossain, S. T. Mahmud, M. Seki, T. Kawai and H. Tabat, “Structural, Electrical Transport, and Magnetic Properties of Ni1?xZnxFe2O4,” Journal of Magnetism and Magnetic Materials, Vol. 312, No. 1, 2007, pp. 210-219. doi:10.1016/j.jmmm.2006.09.030
[35] M. M. Hessien, “Synthesis and Characterization of Lithium Ferrite by Oxalate Precursor Route,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 21, 2008, pp. 2800-2807. doi:10.1016/j.jmmm.2008.06.018

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.