Stair Magnetism: Distinct Magnetic States of Co5C5 Carbide Isomers
Andrew Kuznetsov
ATG:biosynthetics, Merzhausen, Germany.
DOI: 10.4236/jmp.2013.43A061   PDF    HTML   XML   5,170 Downloads   8,464 Views  

Abstract

Ruffle magnetic landscape of transition metals (TM) is a trouble of material science that makes it hard to predict properties of nanomagnets [1,2]. It is not quite clear, whether jumps in magnetic activity is the intrinsic property of TM complexes or a controversy of computational experiments. To solve this problem, isomers of Co5C5 carbide with various positions of carbon atoms on the vertices of Co5 cluster were investigated in DFT (Density Functional Theory) computer simulations. It was found that magnetic moments of the carbide isomers increased with the decreasing number of Co–C bonds. However, C-2 isomers have three Co–C bonds demonstrated distinctive magnetic states. The Co5C5 carbide system showed a discrete magnetism. It was supposed that similar magnetic arrangements take place in endohedral metallofullerenes and filled nanotubes.

Share and Cite:

A. Kuznetsov, "Stair Magnetism: Distinct Magnetic States of Co5C5 Carbide Isomers," Journal of Modern Physics, Vol. 4 No. 3A, 2013, pp. 438-441. doi: 10.4236/jmp.2013.43A061.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. Garg, H. Sharma, N. Kapila, K. Dharamvir and V. K. Jindal, “Transition Metal Induced Magnetism in Smaller Fullerenes (Cn for n ≤ 36),” Nanoscale, Vol. 3, No. 1, 2011, pp. 217-224. doi:10.1039/c0nr00475h
[2] P. Tereshchuk and J. L. F. Da Silva, “Encapsulation of Small Magnetic Clusters in Fullerene Cages: A Density Functional Theory Investigation within van der Waals Corrections,” Physical Review B, Vol. 85, No. 19, 2012, Article ID: 195461. doi:10.1103/PhysRevB.85.195461
[3] B. I. Swanson, S. I. Hamburg and R. R. Ryan, “Bonding in Divalent Transition Metal Cyanides. Crystal Structure of Dicesium Magnesium Hexacyanoferrate (II),” Inorganic Chemistry, Vol. 13, No. 7, 1974, pp 1685-1687. doi:10.1021/ic50137a028
[4] E. A. Robinson, “Interpretation of Bond-Length Data for Transition-Metal-Acetylene Complexes, in Particular the Complex [C5H5NH][TaCI,(PhC=CPh)(NC5H5)],” Journal of the Chemical Society, Dalton Transactions, No. 12, 1981, pp. 2373-2375. doi:10.1039/dt9810002373
[5] P. Susmita, Ch. Sayan, Ph. Manh-Huong, M. Pritish and S. Hariharan, “Carbon Nano Straws: Nanotubes Filled with Superparamagnetic Nanoparticles,” Nanotechnology, Vol. 20, No. 48, 2009, Article ID: 485604. doi:10.1088/0957-4484/20/48/485604
[6] C. Soldano, F. Rossella, V. Bellani, S. Giudicatti and S. Kar, “Cobalt Nanocluster-Filled Carbon Nanotube Arrays: Engineered Photonic Bandgap and Optical Reflectivity,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6573-6578. doi:10.1021/nn101801y
[7] P. F. Weck, E. Kim, K. R. Czerwinski and D. Tomanek, “Structural and Magnetic Properties of Tcn@C60 Endohedral Metalofullerenes: First-Principles Predictions,” Physical Review B, Vol. 81, No. 12, 2010, Article ID: 125448.
[8] M. B. Javan, N. Tajabor, M. Rezaee-Roknabadi and M. Behdani, “First Principles Study of Small Cobalt Clusters Encapsulated in C60 and C82 Spherical Nanocages,” Applied Surface Science, Vol. 257, No. 17, 2011, pp. 7586-7591. doi:10.1016/j.apsusc.2011.03.132
[9] M. B. Javan and N. Tajabor, “Structural, Electronic and Magnetic Properties of Fen@C60 and Fen@C80 (n = 2 - 7) Endohedral Metallofullerene Nano-Cages: First Principles Study,” Journal of Magnetism and Magnetic Materials, Vol. 324, No. 1, 2012, pp. 52-59. doi:10.1016/j.jmmm.2011.07.034
[10] P. L. Tereshchuk, “Energetic and Magnetic Properties of Chitosan with Embedded Co Clusters,” Computational Materials Science, Vol. 50, No. 3, 2011, pp. 991-997. doi:10.1016/j.commatsci.2010.10.038
[11] A. Kuznetsov, “From Carbides to Co5 and Co13 Metallofullerenes: First-Principles Study and Design,” American Journal of Biomedical Engineering, Vol. 2, No. 1, 2012, pp. 32-38. doi:10.5923/j.ajbe.20120201.05
[12] A. Kuznetsov, “Magnetic Properties of Endohedral Complexes Co5@Cn Depending upon the Size and Symmetry of Fullerenes as well as Orientation of Cobalt Cluster,” Computational Materials Science, Vol. 54, 2012, pp. 204- 207. doi:10.1016/j.commatsci.2011.09.034
[13] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, “Visualization, and Analysis Platform,” Journal of Cheminformatics, Vol. 4, 2012, pp. 1-17. http://www.jcheminf.com/content/4/1/17
[14] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review B, Vol. 136, No. 3B, 1964, pp. B864-B871. doi:10.1103/PhysRev.136.B864
[15] T. Ozaki, “Variationally Optimized Atomic Orbitals for Large-Scale Electronic Structures,” Physical Review B, Vol. 67, No. 15, 2003, Article ID: 155108. doi:10.1103/PhysRevB.67.155108
[16] T. Ozaki and H. Kino, “Numerical Atomic Basis Orbitals from H to Kr,” Physical Review B, Vol. 69, No. 19, 2004, Article ID: 195113. doi:10.1103/PhysRevB.69.195113
[17] T. Ozaki and H. Kino, “Efficient Projector Expansion for the ab Initio LCAO Method,” Physical Review B, Vol. 72, No. 4, 2005, Article ID: 045121. doi:10.1103/PhysRevB.72.045121
[18] OpenMX, http://www.openmx-square.org/
[19] P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996. pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[20] P. Császár and P. Pulay, “Geometry Optimization by Direct Inversion in the Iterative Subspace,” Journal of Molecular Structure, Vol. 114, 1984, pp. 31-34. doi:10.1016/S0022-2860(84)87198-7
[21] http://www.jaist.ac.jp/~t-ozaki/vps_pao2006/vps_pao.html
[22] G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Open-Shell Transition Metals,” Physical Review B, Vol. 48, No. 17, 1993, pp. 13115-13118. doi:10.1103/PhysRevB.48.13115
[23] G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Physical Review B, Vol. 54, No. 16, 1996, pp. 11169-11186. doi:10.1103/PhysRevB.54.11169
[24] E. Blochl, “Projector Augmented-Wave Method,” Physical Review B, Vol. 50, No. 24, 1994, pp. 17953-17979. doi:10.1103/PhysRevB.50.17953
[25] G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Physical Review B, Vol. 59, No. 3, 1999, pp. 1758-1775. doi:10.1103/PhysRevB.59.1758

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.