TITLE:
Geochemistry and Microstructure of Construction Materials from the Eastern Districts of N’Djamena Chad with a View to Their Stabilization in the Building and Pottery
AUTHORS:
Warabi Bebbata, Frédéric Pagore Djoda, Madjihingam Ndjolba, Bertin Pagna Kagonbé, Raïdandi Danwé
KEYWORDS:
N’Djamena East Soils, Physicochemical, Microstructural and Thermal Characterization
JOURNAL NAME:
Materials Sciences and Applications,
Vol.15 No.10,
October
12,
2024
ABSTRACT: The early collapse of habitats in the spontaneous neighborhoods of the South-East of N’Djamena city pushed us to carry out investigations on the soil characteristics of the Ambatta 1 (Z1), Ambatta 2 (Z2), and Siguété (Z3) neighborhoods in this city. XRF (X-Ray Fluorescence), XRD (X-Ray Diffraction), FTIR (Fourier Transform InfraRed), SEM (Scanning Electron Microscopy), and ATG/DTA (Thermogravimetry Analysis/Differential Thermal Analysis) were conducted for microstructural and thermal identification. The geochemistry of the three soils studied revealed the presence of SiO2 (49.03% - 73.80%), Al2O3 (08.35% - 17.34%), and Fe2O3 (03.79% - 10.90%) as major elements. The alkalines and alkaline earth elements include potassium K2O (02.57% - 03.07%), magnesium MgO (0.47% - 01.21%), titanium TiO2 (0.81% - 01.41%), sodium Na2O (01.01% - 01.13%) and calcium CaO (01.28% - 03.28%). The fire loss of 09.90% on average remains low. XRD revealed the presence of quartz (~64.28%), feldspar (~07.14%), which are non-clay minerals, and clay minerals like kaolinite (~14.85%), illite (~07.14%) and some traces of smectite and amphibite on all three sites. These oxides were confirmed by FTIR analysis through peaks illustrating the vibrational movements specific to these oxides. SEM shows particles in the increasingly shaped, rounded, shiny sand grains. This is the presence of quartz. These quartz micro textures of abrasive surfaces and topography with conchoidal fractures predict promising mechanical results. Smectite appears in wavy clusters, kaolinite in the form of shiny crystals, and illite materializes by the irregularity of the crystalline shape. These constituents are represented by the presence of their oxides specified by geochemistry. Thermally, the three samples overall retain more than 94% of their constituent on average for a temperature range reaching 950˚C, which predestines them for specific applications. Thus, this study aims to stabilize constructions using local materials after having mastered their constituents.