[1]
|
BC Center for Disease Control (2020) Unproven Therapies for COVID-19 Updated: April 20 2020. http://www.bccdc.ca/Health-Professionals-Site/Documents/Guidelines_Unproven_Therapies_ COVID-19.pdf
|
[2]
|
ASHP Pharmacists Advancing Healthcare (2020) Assessment of Evidence for COVID-19-Related Treatments: Updated 4/24/2020. https://www.ashp.org/-/media/assets/pharmacy-practice/resource-centers/Coronavirus/docs/ ASHP-COVID-19-Evidence-Table.ashx
|
[3]
|
CDC Center for Disease Control and Prevention (2020) Management of Patients with Confirmed 2019-nCoV. March 7, 2020. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
|
[4]
|
WHO World Health Organization (2020) Director-General’s Opening Remarks at the Media Briefing on COVID-19, 11 March, 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media- briefing-on-covid-19---11-march-2020
|
[5]
|
Martinez, M.A. (2020) Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus. Antimicrobial Agents and Chemotherapy, 64, e00399-20. https://doi.org/10.1128/AAC.00399-20
|
[6]
|
Ahuja, N., Subramanian, A. and Fauci, A. (2020) Remdesivir, Tested at Stanford Medicine, Authorized for Emergency Use against COVID-19. http://med.stanford.edu/news/all-news/2020/05/remdesivir-gets-emergency-approval-from- fda-for-covid-19.html
|
[7]
|
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Li, X., et al. (2020) A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382, 1787-1799. https://doi.org/10.1056/NEJMoa2001282
|
[8]
|
Lim, J., Jeon, S., Shin, H.Y., Kim, M.J., Seong, Y.M., Lee, W.J., Choe, K., Kang, Y.M., Lee, B. and Park, S.J. (2020) Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: The Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR. Journal of Korean Medical Science, 35, e79. https://doi.org/10.3346/jkms.2020.35.e89
|
[9]
|
Lu, H. (2020) Drug Treatment Options for the 2019-New Coronavirus (2019-nCoV). Bioscience Trends, 14, 69-71. https://doi.org/10.5582/bst.2020.01020
|
[10]
|
Arabi, M.Y., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Kojan, S., Al Jeraisy, M., Deeb, A.M., Assiri, A.M., Al-Hameed, F., AlSaedi, A., Mandourah, Y., Almekhlafi, G.A., Sherbeeni, N.M., Elzein, F.E., Memon, J., Taha, Y., Almotairi, A., Maghrabi, K.A., Qushmaq, I., Al Bshabshe, A., Kharaba, A., Shalhoub, S., Jose, J., Fowler, R.A., Hayden, F.G. and Hussein, M.A. (2018) Treatment of Middle East Respiratory Syndrome with a Combination of Lopinavir-Ritonavir and Interferon-β1b (MIRACLE Trial): Study Protocol for a Randomized Controlled Trial. Trials, 19, 81. https://doi.org/10.1186/s13063-017-2427-0
|
[11]
|
Chu, C.M., Cheng, V.C.C., Hung, I.F.N., Wong, M.M.L., Chan, K.H., Chan, K.S., Kao, R.Y.T., Poon, L.L.M., Wong, C.L.P., Guan, Y., Peiris, J.S.M. and Yuen, K.Y. (2004) Role of Lopinavir/Ritonavir in the Treatment of SARS: Initial Virological and Clinical Findings. Thorax, 59, 252-256. https://doi.org/10.1136/thorax.2003.012658
|
[12]
|
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W. and Xiao, G. (2020) Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in Vitro. Cell Research, 30, 269-271. https://doi.org/10.1038/s41422-020-0282-0
|
[13]
|
Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Case, J.B., Feng, J.Y., Jordan, R., Ray, A.S., Cihlar, T., Siegel, D., Mackman, R.L., Clarke, M.O., Baric, R.S. and Denison, M.R. (2018) Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio, 9, e00221-18. https://doi.org/10.1128/mBio.00221-18
|
[14]
|
Brown, A.J., Won, J.J., Graham, R.L., Dinnon III, K.H., Sims, A.C., Feng, J.Y., Cihlar, T., Denison, M.R., Baric, R.S. and Sheahan, T.P. (2019) Broad Spectrum Antiviral Remdesivir Inhibits Human Endemic and Zoonotic Deltacoronaviruses with a Highly Divergent RNA Dependent RNA Polymerase. Antiviral Research, 169, Article ID: 104541. https://doi.org/10.1016/j.antiviral.2019.104541
|
[15]
|
Keyaerts, E., Vijgen, L., Maes, P., Neyts, J. and Van Ranst, M. (2004) In Vitro Inhibition of Severe Acute Respiratory Syndrome Coronavirus by Chloroquine. Biochemical and Biophysical Research Communications, 323, 264-268. https://doi.org/10.1016/j.bbrc.2004.08.085
|
[16]
|
Devaux, C.A., Rolain, J.M., Colson, P. and Raoult, D. (2020) mNew Insights on the Antiviral Effects of Chloroquine against Coronavirus: What to Expect for COVID-19? International Journal of Antimicrobial Agents, 55, Article ID: 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
|
[17]
|
Colson, P., Rolain, J.M., Lagier, J.C., Brouqui, P. and Raoult, D. (2020) Chloroquine and Hydroxychloroquine as Available Weapons to Fight COVID-19. International Journal of Antimicrobial Agents, 55, Article ID: 105932. https://doi.org/10.1016/j.ijantimicag.2020.105932
|
[18]
|
Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., Zhou, Y., Zheng, X., Yang, Y., Li, X., Zhang, X., Pan, A. and Wei, H. (2020) Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proceedings of the National Academy of Sciences, 117, 10970-10975. https://doi.org/10.1073/pnas.2005615117
|
[19]
|
Sano and Regeneron Begin Global Kevzara®(Sarilumab) (2020) Clinical Trial Program in Patients with Severe COVID-19 [Press Release]. Sano, Cambridge, Tarrytown.
|
[20]
|
Zhang, X., Song, K., Tong, F., et al. (2020) First Case of COVID-19 in a Patient with Multiple Myeloma Successfully Treated with Tocilizumab. Blood Advances, 4, 1307-1310. https://doi.org/10.1182/bloodadvances.2020001907
|
[21]
|
Orleans, L.A., Is Vice, H. and Manchikanti, L. (2020) Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician, 23, E71-E83. https://asipp.worldsecuresystems.com/COVID-19/DRAFT-COVID%20Article.pdf
|
[22]
|
Mansilla, E. (2020) Clarithromycin as Single Agent for Patients with Suspected or Confirmed COVID-19. https://cellumcenter.wixsite.com/mansillacovid19/patient-info
|
[23]
|
Facebook—Claritromicina como tratamentoe/o Profilaxia Como Agente único para Covid19. https://web.facebook.com/1492697994/posts/10223189309069716/?app=fbl#
|
[24]
|
Mansilla, E. (2020) Clarithromycin Project (Macrolide) as a Therapeutic or Prophylatic as a Single Agent for Covid19. https://osf.io/e563q
|
[25]
|
Cochrane COVID-19 Study Register—Database. https://covid-19.cochrane.org/?q=d(2020-02-04:).k (CLINICAL%20TRIALS%20COVID19).k(RANDOMIZED%20CLINICAL%20TRIALS%20 COVID19)andpn=4
|
[26]
|
Pubmed—Database. https://www.ncbi.nlm.nih.gov/pubmed
|
[27]
|
https://clinicaltrials.gov/ct2/results?cond=Covid19&term=macrolide&cntry=&state=&city=&dist=
|
[28]
|
ClinicalTrials.gov. Hydroxychloroquine vs. Azithromycin for Hospitalized Patients with Suspected or Confirmed COVID-19 (HAHPS). ClinicalTrials.gov Identifier: NCT04329832.
|
[29]
|
ClinicalTrials.gov. Azithromycin for COVID-19 Treatment in Outpatients Nationwide (ACTION). ClinicalTrials.gov Identifier: NCT04332107. https://clinicaltrials.gov/ct2/show/NCT04332107?term=macrolideandcond=covid19anddraw=2andrank=3
|
[30]
|
ClinicalTrials.gov. Azithromycin in Hospitalized COVID-19 Patients (AIC). ClinicalTrials.gov Identifier: NCT04359316. https://clinicaltrials.gov/ct2/show/NCT04359316?term=azythromycinandcond=covid19anddraw=4andrank=4
|
[31]
|
Azuma, A. (2014) Macrolide Antibiotics: 25 Years of Use and the Future Treatment of Common Diseases. Community Acquired Infection, 1, 6. http://www.caijournal.com/text.asp?2014/1/1/6/141746 https://doi.org/10.4103/2225-6482.141746
|
[32]
|
Scheld, W.M., Whitman, M.S. and Tunkel, A.R. (1992) Azithromycin and Clarithromycin Overview and Comparison with Erythromycin. Infection Control and Hospital Epidemiology, 13, 357-368. https://doi.org/10.2307/30147135
|
[33]
|
LeBel, M. (1993) Pharmacokinetic Properties of Clarithromycin: A Comparison with Erythromycin and Azithromycin. Canadian Journal of Infectious Diseases and Medical Microbiology, 4, 148-152. https://doi.org/10.1155/1993/168061
|
[34]
|
Grayson, M.L., Crowe, S.M., McCarthy, J.S., Mills, J., Mouton, J.W., Norrby, S.R., Pterson, D.L. and Pfaller, M.A. (2010) Kucers’ the Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs. 6th Edition, Taylor and Francis Group, Boca Raton.
|
[35]
|
Retallack, H., Di Lullo, E., Arias, C., Knopp, K.A., Laurie, M.T., Sandoval-Espinosa, C., Leon, W.M.R., Krencik, R., Ullian, E.M., Spatazza, J., Pollen, A.A., Mandel-Brehm, C., Nowakowski, T.J., Kriegstein, A.R. and DeRisi, J.L. (2016) Zika Virus Cell Tropism in the Developing Human Brain and Inhibition by Azithromycin. Proceedings of the National Academy of Sciences, 113, 14408-14413. https://doi.org/10.1073/pnas.1618029113
|
[36]
|
Bosseboeuf, E., Aubry, M., Nhan, T., Pina, J.J., Rolain, J.M., Raoult, D. and Musso, D. (2018) Azithromycin Inhibits the Replication of Zika Virus. Journal of Antivirals & Antiretrovirals, 10, 6-11. https://doi.org/10.4172/1948-5964.1000173 https://www.longdom.org/open-access/azithromycin-inhibits-the-replication-of-zika-virus-1948-5964-1000173.pdf
|
[37]
|
Li, C., Zu, S., Deng, Y.-Q., Li, D., Parvatiyar, K., Quanquin, N., Shang, J., Sun, N., Su, J., Liu, Z., Wang, M., Aliyari, S.R., Li, X.-F., Wu, A., Ma, F., Shi, Y., Nielsen-Saines, K., Jung, J.U., Qin, F.X.-F., Qin, C.-F. and Cheng, G. (2019) Azithromycin Protects against Zika Virus Infection by Upregulating Virus-Induced Type I and III Interferon Responses. Antimicrobial Agents and Chemotherapy, 63, e00394-19. https://doi.org/10.1128/AAC.00394-19
|
[38]
|
Bermejo-Martin, J.F., Kelvin, D.J., Eiros, J.M., Castrodeza, J. and de Lejarazu, R.O. (2009) Macrolides for the Treatment of Severe Respiratory Illness Caused by Novel H1N1 Swine Influenza Viral Strains. The Journal of Infection in Developing Countries, 3, 159-161. http://jidc.org/index.php/journal/article/view/18/8 https://doi.org/10.3855/jidc.18
|
[39]
|
Kneyber, M.C., van Woensel, J.B., Uijtendaal, E., Uiterwaal, C.S., Kimpen, J.L. and Dutch Antibiotics in RSV Trial (DART) Research Group (2008)Azithromycin Does Not Improve Disease Course in Hospitalized Infants with Respiratory Syncytial Virus (RSV) Lower Respiratory Tract Disease: A Randomized Equivalence Trial. Pediatric Pulmonology, 43, 142-149. https://doi.org/10.1002/ppul.20748
|
[40]
|
Hung, I.F., To, K.K., Chan, J.F., Cheng, V.C., Liu, K.S., Tam, A., Chan, T., Zhang, A.J., Li, P., Wong, T., Zhang, R., Ceung, M.K.S., Leung, W., Liau, J.Y.N., Fok, M., Chen, H., Chan, K. and Yuen, K. (2017) Efficacy of Clarithromycin-Naproxen-Oseltamivir Combination in the Treatment of Patients Hospitalized for Influenza A (H3N2) Infection: An Open-Label Randomized, Controlled, Phase IIb/III Trial. Chest, 151, 1069-1080. https://doi.org/10.1016/j.chest.2016.11.012
|
[41]
|
Logan, R.P., Gummett, P.A., Schaufelberger, H.D., Greaves, R.R., Mendelson, G.M., Walker, M.M., Thomas, P.H., Baron, J.H. and Misiewicz, J.J. (1994) Eradication of Helicobacter pylori with Clarithromycin and Omeprazole. Gut, 35, 323-326. https://doi.org/10.1136/gut.35.3.323
|
[42]
|
Pillozzi, S., Masselli, M., Gasparoli, L., D’amico, M., Polletta, L., Veltroni, M., Favre, C., Basso, G. and Arcangeli, A. (2016) Macrolide Antibiotics Exert Antileukemic Effects by Modulating the Autophagic Flux through Inhibition of hERG1 Potassium Channels. Blood Cancer Journal, 6, e423. https://doi.org/10.1038/bcj.2016.32
|
[43]
|
Lee, J.Y., Vinayagamoorthy, N., Han, K., Kwok, S.K., Ju, J.H., Park, K.S., Jung, S., Park, S., Chung, Y. and Park, S.H. (2016) Association of Polymorphisms of Cytochrome P450 2D6 with Blood Hydroxychloroquine Levels in Patients with Systemic Lupus Erythematosus. Arthritis and Rheumatology, 68, 184-190. https://doi.org/10.1002/art.39402
|
[44]
|
Zhang, Y., Dai, J., Jian, H. and Lin, J. (2019) Effects of Macrolides on Airway Microbiome and Cytokine of Children with Bronchiolitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Microbiology and Immunology, 63, 343-349. https://doi.org/10.1111/1348-0421.12726
|
[45]
|
Kudoh, S., Uetake, T., Hagiwara, K., Hirayama, M., Hus, L.H., Kimura, H. and Sugiyama, Y. (1987) Clinical Effect of Low-Dose Long-Term Erythromycin Chemotherapy on Diffuse Panbronchiolitis. The Japanese Journal of Thoracic Diseases, 25, 632-642.
|
[46]
|
Asada, M., Yoshida, M., Suzuki, T., Hatachi, Y., Sasaki, T., Yasuda, H., Nakayama, K., Nishimura, H., Nagatomi, R., Kubo, H. and Yamaya, M. (2009) Macrolide Antibiotics Inhibit Respiratory Syncytial Virus Infection in Human Airway Epithelial Cells. Antiviral Research, 83, 191-200. https://doi.org/10.1016/j.antiviral.2009.05.003
|
[47]
|
Tahan, F., Ozcan, A. and Koc, N. (2007) Clarithromycin in the Treatment of RSV Bronchiolitis: A Double-Blind, Randomised, Placebo-Controlled Trial. European Respiratory Journal, 29, 91-97. https://doi.org/10.1183/09031936.00029206
|
[48]
|
Maeda, S., Yamada, Y., Nakamura, H., et al. (1999) Efficacy of Antibiotics against Influenza-Like Illness in an Influenza Epidemic. Pediatrics International, 41, 274-276. https://doi.org/10.1046/j.1442-200x.1999.01069.x
|
[49]
|
Suzuki, T., Yamaya, M., Sekizawa, K., Hosoda, M., Yamada, N., Ishizuka, S., Yoshimo, A., Yasuda, H., Takahashi, H., Nishimura, H. and Sasaki, H. (2002) Erythromycin Inhibits Rhinovirus Infection in Cultured Human Tracheal Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 165, 1113-1118. https://doi.org/10.1164/ajrccm.165.8.2103094
|
[50]
|
Sato, K., Suga, M., Akaike, T., Fujii, S., Muranaka, H., Doi, T., Maeda, H. and Ando, M. (1998) Therapeutic Effect of Erythromycin on Influenza Virus-Induced Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 157, 853-857. https://doi.org/10.1164/ajrccm.157.3.9703098
|
[51]
|
Wang, J.H., Lee, S.H., Kwon, H.J. and Jang, Y.J. (2010) Clarithromycin Inhibits Rhinovirus-Induced Bacterial Adhesions to Nasal Epithelial Cells. The Laryngoscope, 120, 193-199. https://doi.org/10.1002/lary.20670
|
[52]
|
Jang, Y.J., Kwon, H.J. and Lee, B.J. (2006) Effect of Clarithromycin on Rhinovirus-16 Infection in A549 Cells. European Respiratory Journal, 27, 12-19. https://doi.org/10.1183/09031936.06.00008005
|
[53]
|
Abisheganaden, J.A., Avila, P.C., Kishiyama, J.L., Liu, J., Yagi, S., Schnurr, D. and Boushey, H.A. (2000) Effect of Clarithromycin on Experimental Rhinovirus-16 Colds: A Randomized, Double-Blind, Controlled Trial. The American Journal of Medicine, 108, 453-459. https://doi.org/10.1016/S0002-9343(00)00329-6
|
[54]
|
Yamaya, M., Shinya, K., Hatachi, Y., Kubo, H., Asada, M., Yasuda, H., Nishimura, H. and Nagatomi, R. (2010) Clarithromycin Inhibits Type a Seasonal Influenza Virus Infection in Human Airway Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 333, 81-90. https://doi.org/10.1124/jpet.109.162149
|
[55]
|
Miyamoto, D., Hasegawa, S., Sriwilaijaroen, N., Yingsakmongkon, S., Hiramatsu, H., Takahashi, T., Hidarik, K., Guo, C., Sakano, Y., Suzuki, T. and Suzuki, Y. (2008) Clarithromycin Inhibits Progeny Virus Production from Human Influenza Virus-Infected Host Cells. Biological and Pharmaceutical Bulletin, 31, 217-222. https://doi.org/10.1248/bpb.31.217
|
[56]
|
Tsurita, M., Kurokawa, M., Imakita, M., Fukuda, Y., Watanabe, Y. and Shiraki, K. (2001) Early Augmentation of Interleukin (IL)-12 Level in the Airway of Mice Administered Orally with Clarithromycin or Intranasally with IL-12 Results in Alleviation of Influenza Infection. Journal of Pharmacology and Experimental Therapeutics, 298, 362-368. http://jpet.aspetjournals.org/content/298/1/362
|
[57]
|
Sawabuchi, T., Suzuki, S., Iwase, K., Ito, C., Mizuno, D., Togari, H., Watanabe, I., Talukder, S.R., Chida, J. and Kido, H. (2009) Boost of Mucosal Secretory Immunoglobulin A Response by Clarithromycin in Paediatric Influenza. Respirology, 14, 1173-1179. https://doi.org/10.1111/j.1440-1843.2009.01639.x
|
[58]
|
Takahashi, E., Kataoka, K., Indalao, I.L., Konoha, K., Fujii, K., Chida, J., Mizuno, D., Fujihashi, K. and Kido, H. (2012) Oral Clarithromycin Enhances Airway Immunoglobulin A (IgA) Immunity through Induction of IgA Class Switching Recombination and B-Cell-Activating Factor of the Tumor Necrosis Factor Family Molecule on Mucosal Dendritic Cells in Mice Infected with Influenza A Virus. Journal of Virology, 86, 10924-10934. https://doi.org/10.1128/JVI.01207-12
|
[59]
|
Desaki, M., Takizawa, H., Ohtoshi, T., Kasama, T., Kobayashi, K., Sunazuka, T., Omura, S., Yamamoto, K. and Ito, K. (2000) Erythromycin Suppresses Nuclear Factor-κB and Activator Protein-1 Activation in Human Bronchial Epithelial Cells. Biochemical and Biophysical Research Communications, 267, 124-128. https://doi.org/10.1006/bbrc.1999.1917
|
[60]
|
Amsden, G.W. (2005) Anti-Inflammatory Effects of Macrolides: An Underappreciated Benefit in the Treatment of Community-Acquired Respiratory Tract Infections and Chronic Inflammatory Pulmonary Conditions? J Antimicrob Chemother, 55, 10-21.
|
[61]
|
Maimon, N., Lipton, J.H., Chan, C.K. and Marras, T.K. (2009) Macrolides in the Treatment of Bronchiolitis obliterans in Allograft Recipients. Bone Marrow Transplant, 44, 69-73.
|
[62]
|
Parnham, M.J. (2005) Immunomodulatory Effects of Antimicrobials in the Therapy of Respiratory Tract Infections. Current Opinion in Infectious Diseases, 18, 125-131. https://doi.org/10.1097/01.qco.0000160901.71813.fe https://journals.lww.com/co-infectiousdiseases/fulltext/2005/04000/immunomodulatory_effects_of_antimicrobials_in_the.9.aspx
|
[63]
|
Inoue, D., Kubo, H., Sasaki, T., Yasuda, H., Numasaki, M., Sasaki, H. and Yamaya, M. (2008) Erythromycin Attenuates MUC5AC Synthesis and Secretion in Cultured Human Tracheal Cells Infected with RV14. Respirology, 13, 215-220. https://doi.org/10.1111/j.1440-1843.2007.01227.x
|
[64]
|
Shinahara, W., Takahashi, E., Sawabuchi, T., Arai, M., Hirotsu, N., Takasaki, Y., Shindo, S., Shibao, K., Yokoyama, T., Nishikawa, K., Mino, M., Iwaya, M., Yamashita, Y., Suzuki, S., Mizuno, D. and Kido, H. (2013) Immunomodulator Clarithromycin Enhances Mucosal and Systemic Immune Responses and Reduces Re-Infection Rate in Pediatric Patients with Influenza Treated with Antiviral Neuraminidase Inhibitors: A Retrospective Analysis. PLoS ONE, 8, e70060. https://journals.plos.org/plosone/article/file?type=printableandid=10.1371/journal.pone.0070060 https://doi.org/10.1371/journal.pone.0070060
|
[65]
|
Vázquez-Laslop, N. and Mankin, A.S. (2018) How Macrolide Antibiotics Work. Trends Biochem Sci., 43, 668-684.
|
[66]
|
Takizawa, H., Desaki, M., Ohtoshi, T., Kawasaki, S., Kohyama, T., Sato, M., Tanaka, M., Kasama, T., Kobayashi, K., Nakajima, J. and Ito, K. (1997) Erythromycin Modulates IL-8 Expression in Normal and Inflamed Human Bronchial Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 156, 266-271. https://doi.org/10.1164/ajrccm.156.1.9612065
|
[67]
|
Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S. and Manson, J.J. (2020) COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. The Lancet, 395, 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
|
[68]
|
Lee, N., Wong, C.K., Chan, M.C., Yeung, E.S., Tam, W.W., Tsang, O.T., Choi, K., Chan, P.K.S., Kwok, A., Lui, G.C.Y., Leung, W., Yung, I.M.H., Wong, R.Y.K., Cheung, C.S.K. and Hui, D.S.C. (2017) Anti-Inflammatory Effects of Adjunctive Macrolide Treatment in Adults Hospitalized with Influenza: A Randomized Controlled Trial. Antiviral Research, 144, 48-56. https://doi.org/10.1016/j.antiviral.2017.05.008
|
[69]
|
Kanoh, S. and Rubin, B.K. (2010) Mechanisms of Action and Clinical Application of Macrolides as Immunomodulatory Medications. Clinical Microbiology Reviews, 23, 590-615. https://doi.org/10.1128/CMR.00078-09
|
[70]
|
Wales, D. and Woodhead, M. (1999) The Anti-Inflammatory Effects of Macrolides. Thorax, 54, S58. https://doi.org/10.1136/thx.54.2008.S58
|
[71]
|
Arikata, M., Itoh, Y., Shichinohe, S., Nakayama, M., Ishigaki, H., Kinoshita, T., Le, M.Q., Kawaoka, Y., Ogasawara, K. and Shimizu, T. (2019) Efficacy of Clarithromycin against H5N1 and H7N9 Avian Influenza a Virus Infection in Cynomolgus Monkeys. Antiviral Research, 171, Article ID: 104591. https://doi.org/10.1016/j.antiviral.2019.104591
|
[72]
|
Azuma, A., Yamaya, M., Kadota, J.I., Mikasa, K. and Kudoh, S. (2013) Use of Macrolides in the 2009 H1N1 Virus Infection Outbreak: A Survey of General Practices in Japan. Respiratory Investigation, 51, 257-259. https://doi.org/10.1016/j.resinv.2013.04.002
|
[73]
|
Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., Wang, J., Qin, Y., Zhang, X., Yan, X., Zeng, X. and Zhang, S. (2020) The Use of Anti-Inflammatory Drugs in the Treatment of People with Severe Coronavirus Disease 2019 (COVID-19): The Experience of Clinical Immunologists from China. Clinical Immunology, 214, Article ID: 108393. https://doi.org/10.1016/j.clim.2020.108393
|
[74]
|
Stebbing, J., Phelan, A., Griffin, I., Tucker, C., Oechsle, O., Smith, D. and Richardson, P. (2020) COVID-19: Combining Anti-Viral and an Anti-Inflammatory Treatments. Lancet Infectious Disease, 20, 400-402. https://doi.org/10.1016/S1473-3099(20)30132-8
|
[75]
|
Min, J.Y. and Jang, Y.J. (2012) Macrolide Therapy in Respiratory Viral Infections. Mediators Inflamm, 2012, 649570.
|
[76]
|
Arabi, Y.M., Deeb, A.M., Al-Hameed, F., Mandourah, Y., Almekhlafi, G.A., Sindi, A.A., Al-Omari, A., Shalhoub, S., Mady, A., Alraddadi, B., Almotairi, A., Al Khatib, K., Abdulmomen, A., Qushmaq, I., Solaiman, O., Al-Aithan, A. M., Al-Raddadi, R., Ragab, A., Al Harthy, A., Kharaba, A., Jose, J., Dabbagh, T., Fowler, R.A., Balkhy, H.H., Merson, L. and Hayden, F.G. (2019) Macrolides in Critically Ill Patients with Middle East Respiratory Syndrome. International Journal of Infectious Diseases, 81, 184-190. https://doi.org/10.1016/j.ijid.2019.01.041
|
[77]
|
Gautret, P., Lagier, J., Parola, P., Hoang, V.T., Meddeb, L., Sevestre, J., Mailhe, M., Doudier, B., Aubry, C., Amrane, S., Seng, P., Hocquart, M., Eldin, C., Finance, J., Vieira, V.E., Tissot-Dupont, H.T., Honoré, S., Stein, A., Million, M., Colson, P., La Scola, B., Veit, V., Deharo, A.J.J., Drancourt, M., Fournier, P.E., Rolain, J., Brouqui, P. and Raoult, D. (2020) Clinical and Microbiological Effect of a Combination of Hydroxychloroquine and Azithromycin in 80 COVID-19 Patients with at Least a Six-Day Follow Up: A Pilot Observational Study. Travel Medicine and Infectious Disease, 34, Article ID: 101663. https://doi.org/10.1016/j.tmaid.2020.101663
|
[78]
|
Gautret, P., Lagier, J., Parola, P., Hoang, V.T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V.E., Dupont, H.T., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J., Brouqui, P. and Raoult, D. (2020) Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-Label Non-Randomized Clinical Trial. International Journal of Antimicrobial Agents, 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
|
[79]
|
Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A. and Einav, S. (2020) A Systematic Review on the Efficacy and Safety of Chloroquine for the Treatment of COVID-19. Journal of Critical Care, 57, 279-283. https://doi.org/10.1016/j.jcrc.2020.03.005
|
[80]
|
Jeevaratnam, K. (2020) Chloroquine and Hydroxychloroquine for COVID-19: Implications for Cardiac Safety. Eur Heart J Cardiovasc Pharmacother, pvaa041.
|
[81]
|
Molina, J.M., Delaugerre, C., Le Goff, J., Mela-Lima, B., Ponscarme, D., Goldwirt, L. and de Castro, N. (2020) No Evidence of Rapid Antiviral Clearance or Clinical Benefit with the Combination of Hydroxychloroquine and Azithromycin in Patients with Severe COVID-19 Infection. Médecine et Maladies Infectieuses, 50, 384. https://doi.org/10.1016/j.medmal.2020.03.006
|
[82]
|
Dayer, M.R. (2020) Old Drugs for Newly Emerging Viral Disease, COVID-19: Bioinformatic Prospective. https://arxiv.org/abs/2003.04524
|
[83]
|
Dayer, M.R. (2020) Coronavirus (2019-nCoV) Deactivation via Spike Glycoprotein Shielding by Old Drugs, Bioinformatic Study. https://www.preprints.org/manuscript/202005.0020/v1 https://doi.org/10.20944/preprints202005.0020.v1
|
[84]
|
Huang, W.H., Teng, L.C., Yeh, T.K., Chen, Y.J., Lo, W.J., Wu, M.J., Chin, C., Tsan, Y., Lin, T., Chai, J., Lin, C., Tseng, C., Liu, C., Wu, C., Chen, P, Shi, Z. and Liu, P. (2020) 2019 Novel Coronavirus Disease (COVID-19) in Taiwan Region: Reports of Two Cases from Wuhan, China. Journal of Microbiology, Immunology and Infection, 53, 481-484. https://doi.org/10.1016/j.jmii.2020.02.009
|
[85]
|
Millán-Onate, J., Millan, W., Mendoza, L.A., Sánchez, C.G., Fernandez-Suarez, H., Bonilla-Aldana, D.K. and Rodríguez-Morales, A.J. (2020) Successful Recovery of COVID-19 Pneumonia in a Patient from Colombia after Receiving Chloroquine and Clarithromycin. Annals of Clinical Microbiology and Antimicrobials, 19, Article No. 16. https://doi.org/10.1186/s12941-020-00358-y
|
[86]
|
Crespo, A.O.O., Cedillo, A.J.O., Cedillo, P.O.O., Cedillo, A.E.O. and León, A. (2020) Nueva alternativa para el tratamiento para Covid 19 en Ecuador. InterAmerican Journal of Medicine and Health, 3, 1-10. https://doi.org/10.31005/iajmh.v3i0.82
|
[87]
|
Wikipedia. COVID-19 Pandemic in Brazil. https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Brazil
|
[88]
|
Heneghan, C., Aronson, J., Hobbs, R. and Mahtani, K. (2020) Rapidly Managing Pneumonia in Older People during a Pandemic. https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic
|
[89]
|
National Institute for Health and Care Excellence (2020) NICE Guidance Updated: COVID19 Rapid Guideline: Managing Suspected or Confirmed Pneumonia in Adults in Community. https://www.nice.org.uk/guidance/ng165
|