[1]
|
Release kinetics of nanoherbicides in aqueous and soil environments—a comprehensive review of release dynamics of nanoherbicide in water and soil
Polymer Bulletin,
2025
DOI:10.1007/s00289-025-05644-3
|
|
|
[2]
|
Carbon Nanotubes in Agriculture
2025
DOI:10.1016/B978-0-443-19047-6.00008-4
|
|
|
[3]
|
Environmental Remediation in Agri-Food Industry Using Nanotechnology and Sustainable Strategies
2025
DOI:10.1016/B978-0-443-13298-8.00016-X
|
|
|
[4]
|
Prospects and challenges of nanopesticides in advancing pest management for sustainable agricultural and environmental service
Environmental Research,
2024
DOI:10.1016/j.envres.2024.119722
|
|
|
[5]
|
Biogenic zinc oxide nanoregulator determines the quantitative analysis of morpho‐anatomical and antioxidant capacity in Lactuca sativa L.
Food Science & Nutrition,
2024
DOI:10.1002/fsn3.4261
|
|
|
[6]
|
Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology
Nanotechnology in the Life Sciences,
2024
DOI:10.1007/978-3-031-76000-6_15
|
|
|
[7]
|
Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology
Nanotechnology in the Life Sciences,
2024
DOI:10.1007/978-3-031-76000-6_12
|
|
|
[8]
|
Nanotechnology and Nanomaterials in the Agri-Food Industries
2024
DOI:10.1016/B978-0-323-99682-2.00014-1
|
|
|
[9]
|
New Technologies for Energy Transition Based on Sustainable Development Goals
2024
DOI:10.1007/978-981-97-2527-4_23
|
|
|
[10]
|
Biogenic zinc oxide nanoregulator determines the quantitative analysis of morpho‐anatomical and antioxidant capacity in Lactuca sativa L.
Food Science & Nutrition,
2024
DOI:10.1002/fsn3.4261
|
|
|
[11]
|
Unlocking sustainable agricultural development in Africa via bio-nanofertilizer application - challenges, opportunities and prospects
Scientific African,
2024
DOI:10.1016/j.sciaf.2024.e02276
|
|
|
[12]
|
Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems
Global Challenges,
2024
DOI:10.1002/gch2.202300187
|
|
|
[13]
|
A review on recent advances in the applications of composite Fe
3
O
4
magnetic nanoparticles in the food industry
Critical Reviews in Food Science and Nutrition,
2024
DOI:10.1080/10408398.2022.2113363
|
|
|
[14]
|
Nanohybrid Fungicides
2024
DOI:10.1016/B978-0-443-23950-2.00018-7
|
|
|
[15]
|
Nanofertilizer Delivery, Effects and Application Methods
2024
DOI:10.1016/B978-0-443-13332-9.00005-8
|
|
|
[16]
|
Boosting Solanum tuberosum resistance to Alternaria solani through green synthesized ferric oxide (Fe2O3) nanoparticles
Scientific Reports,
2024
DOI:10.1038/s41598-024-52704-1
|
|
|
[17]
|
Application of Si and Ag Green Nanoparticles, Epibrassinolide, and Methyl Jasmonate Causes Delay in Decay of Malus Domestica Fruits via Improving Postharvest Physiology at Ambient Conditions
Agricultural Research,
2024
DOI:10.1007/s40003-023-00675-6
|
|
|
[18]
|
Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms
Frontiers in Microbiology,
2024
DOI:10.3389/fmicb.2024.1354440
|
|
|
[19]
|
Nanotoxicology for Agricultural and Environmental Applications
2024
DOI:10.1016/B978-0-443-15570-3.00002-8
|
|
|
[20]
|
Manganese Nanoparticles: Synthesis, Mechanisms of Influence on Plant Resistance to Stress, and Prospects for Application in Agricultural Chemistry
Journal of Agricultural and Food Chemistry,
2024
DOI:10.1021/acs.jafc.3c07350
|
|
|
[21]
|
Manganese Nanoparticles: Synthesis, Mechanisms of Influence on Plant Resistance to Stress, and Prospects for Application in Agricultural Chemistry
Journal of Agricultural and Food Chemistry,
2024
DOI:10.1021/acs.jafc.3c07350
|
|
|
[22]
|
Stress Biology in Photosynthetic Organisms
2024
DOI:10.1007/978-981-97-1883-2_14
|
|
|
[23]
|
Nanoagrosomes: Future prospects in the management of drug resistance for sustainable agriculture
Plant Nano Biology,
2023
DOI:10.1016/j.plana.2023.100039
|
|
|
[24]
|
Genetically engineered microorganisms for environmental remediation
Chemosphere,
2023
DOI:10.1016/j.chemosphere.2022.136751
|
|
|
[25]
|
Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management
2023
DOI:10.1016/B978-0-323-91933-3.00008-8
|
|
|
[26]
|
The Impact of Nanoparticles on Agriculture and Soil
2023
DOI:10.1016/B978-0-323-91703-2.00018-X
|
|
|
[27]
|
Magnesium Oxide Nanoparticles: An Influential Element in Cowpea (Vigna unguiculata L. Walp.) Tissue Culture
Agronomy,
2023
DOI:10.3390/agronomy13061646
|
|
|
[28]
|
Nanoagrosomes: Future prospects in the management of drug resistance for sustainable agriculture
Plant Nano Biology,
2023
DOI:10.1016/j.plana.2023.100039
|
|
|
[29]
|
Nanoformulations for Sustainable Agriculture and Environmental Risk Mitigation
2023
DOI:10.1079/9781800623095.0006
|
|
|
[30]
|
Nanoformulations for Sustainable Agriculture and Environmental Risk Mitigation
2023
DOI:10.1079/9781800623095.0005
|
|
|
[31]
|
Exploring the potential of nanofertilizers for a sustainable agriculture
Plant Nano Biology,
2023
DOI:10.1016/j.plana.2023.100044
|
|
|
[32]
|
Millet Rhizosphere
Rhizosphere Biology,
2023
DOI:10.1007/978-981-99-2166-9_15
|
|
|
[33]
|
Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming
Environmental Research,
2023
DOI:10.1016/j.envres.2023.116849
|
|
|
[34]
|
Exploring the potential of nanofertilizers for a sustainable agriculture
Plant Nano Biology,
2023
DOI:10.1016/j.plana.2023.100044
|
|
|
[35]
|
Targeted Delivery of Nanopesticides and Nanofertilizers in Sustainable Agricultural Farming
Nanotechnology in the Life Sciences,
2023
DOI:10.1007/978-3-031-41333-9_10
|
|
|
[36]
|
Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides
Frontiers in Microbiology,
2023
DOI:10.3389/fmicb.2023.1040901
|
|
|
[37]
|
Millet Rhizosphere
Rhizosphere Biology,
2023
DOI:10.1007/978-981-99-2166-9_15
|
|
|
[38]
|
Morpho-physiological growth performance and anti-oxidative capabilities of Acacia jacquemontii and Acacia nilotica upon exposure to Co3O4 Nbs in lead-contaminated soil
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.108081
|
|
|
[39]
|
Agricultural and Environmental Nanotechnology
Interdisciplinary Biotechnological Advances,
2023
DOI:10.1007/978-981-19-5454-2_4
|
|
|
[40]
|
Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides
Frontiers in Microbiology,
2023
DOI:10.3389/fmicb.2023.1040901
|
|
|
[41]
|
Metal-organic framework-enabled pesticides are an emerging tool for sustainable cleaner production and environmental hazard reduction
Journal of Cleaner Production,
2022
DOI:10.1016/j.jclepro.2022.133966
|
|
|
[42]
|
Metal-organic framework-enabled pesticides are an emerging tool for sustainable cleaner production and environmental hazard reduction
Journal of Cleaner Production,
2022
DOI:10.1016/j.jclepro.2022.133966
|
|
|
[43]
|
Hydrogel Application in Urban Farming: Potentials and Limitations—A Review
Polymers,
2022
DOI:10.3390/polym14132590
|
|
|
[44]
|
Impacts of metallic nanoparticles application on the agricultural soils microbiota
Journal of Hazardous Materials Advances,
2022
DOI:10.1016/j.hazadv.2022.100103
|
|
|
[45]
|
Synthesis and Applications of Nanoparticles
2022
DOI:10.1007/978-981-16-6819-7_14
|
|
|
[46]
|
A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry
Critical Reviews in Food Science and Nutrition,
2022
DOI:10.1080/10408398.2022.2113363
|
|
|
[47]
|
Metal-organic framework-enabled pesticides are an emerging tool for sustainable cleaner production and environmental hazard reduction
Journal of Cleaner Production,
2022
DOI:10.1016/j.jclepro.2022.133966
|
|
|
[48]
|
Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management
Nanoscale,
2022
DOI:10.1039/D2NR03944C
|
|
|
[49]
|
Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review
Frontiers in Plant Science,
2022
DOI:10.3389/fpls.2022.946717
|
|
|
[50]
|
Plant Stress: Challenges and Management in the New Decade
Advances in Science, Technology & Innovation,
2022
DOI:10.1007/978-3-030-95365-2_26
|
|
|
[51]
|
Hydrogel Application in Urban Farming: Potentials and Limitations—A Review
Polymers,
2022
DOI:10.3390/polym14132590
|
|
|
[52]
|
Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture
Advances in Colloid and Interface Science,
2022
DOI:10.1016/j.cis.2022.102645
|
|
|
[53]
|
Plant and Nanoparticles
2022
DOI:10.1007/978-981-19-2503-0_15
|
|
|
[54]
|
The Role of Nanoparticles in Plant Nutrition under Soil Pollution
Sustainable Plant Nutrition in a Changing World,
2022
DOI:10.1007/978-3-030-97389-6_7
|
|
|
[55]
|
Insecticides - Impact and Benefits of Its Use for Humanity
2022
DOI:10.5772/intechopen.101155
|
|
|
[56]
|
Impacts of metallic nanoparticles application on the agricultural soils microbiota
Journal of Hazardous Materials Advances,
2022
DOI:10.1016/j.hazadv.2022.100103
|
|
|
[57]
|
Impacts of metallic nanoparticles application on the agricultural soils microbiota
Journal of Hazardous Materials Advances,
2022
DOI:10.1016/j.hazadv.2022.100103
|
|
|
[58]
|
Advances with Molecular Nanomaterials in Industrial Manufacturing Applications
Nanomanufacturing,
2021
DOI:10.3390/nanomanufacturing1020008
|
|
|
[59]
|
Advances with Molecular Nanomaterials in Industrial Manufacturing Applications
Nanomanufacturing,
2021
DOI:10.3390/nanomanufacturing1020008
|
|
|
[60]
|
Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation
Journal of Nanoparticle Research,
2021
DOI:10.1007/s11051-021-05269-3
|
|
|