TITLE:
A Privacy Preserving Federated Learning System for IoT Devices Using Blockchain and Optimization
AUTHORS:
Yang Han
KEYWORDS:
Blockchain, Credibility Status, Federated Learning, IoT, Privacy, Weighted Mean of Vectors
JOURNAL NAME:
Journal of Computer and Communications,
Vol.12 No.9,
September
14,
2024
ABSTRACT: In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averaging during global update and model training, where data is unevenly distributed among devices and there are variations in the number of data samples. Using a well-defined structure and updating the vector positions by local searching, vector combining, and updating rules, the EINFO algorithm maximizes the shared model parameters. In order to increase the exploration and exploitation capabilities, the model convergence rate is improved and new vectors are generated through the use of a weighted mean vector based on the inverse square law. To choose validators, miners, and to propagate new blocks, a delegated proof of stake based on the reliability of blockchain nodes is suggested. Federated learning is included into the blockchain to protect nodes from both external and internal threats. To determine how well the suggested system performs in relation to current models in the literature, extensive simulations are run. The simulation results show that the proposed system outperforms existing schemes in terms of accuracy, sensitivity and specificity.