Article citationsMore>>
Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., Jacquemin, I., Canters, F., Vanderhaegen, S., Engelen, G., Poelmans, L., De Becker, P., & Batelaan, O. (2013). A System-based Paradigm of Drought Analysis for Operational Management. Water Resources Management, 27, 5281-5297.
https://doi.org/10.1007/s11269-013-0471-4
has been cited by the following article:
-
TITLE:
Prediction of Meteorological Drought in the Lower Nu River by Statistical Model
AUTHORS:
Wenhua Chen, Juan Xu, Shuangcheng Li
KEYWORDS:
Meteorological Drought, Climate Change, Lower Nu River, Statistical Model
JOURNAL NAME:
American Journal of Climate Change,
Vol.9 No.2,
May
12,
2020
ABSTRACT: Global climate change, temperature rise and some kinds of extreme meteorological disaster, such as the drought, threaten the development of the natural ecosystem and human society. Forecasting in drought is an important step toward developing a disaster mitigation system. In this study, we utilized the statistical, autoregressive integrated moving average (ARIMA) model to predict drought conditions based on the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in a major tributary in the lower reaches of Nu River. We employed data from 2001 to 2010 to fit the model and data from 2011 to 2013 for model validation. The results showed that the coefficients of determination (R2) was over 0.85 in each index series, and the root-mean-square error and mean absolute error were low, implying that the ARIMA model is effective and adequate for this region.
Related Articles:
-
Pierpaolo Perrucci
-
Marie M. Dorr, Magali Favre-Mercuret, Katell Vié, Richard Fitoussi
-
Nazifa Tasnia, Ruan Binte Haque, Mirza Mofazzal Islam, Md. Ashraful Haque
-
Zaina Tsouhlaris
-
El-Hadji Yakoubou Rafiou, Lawson-Ananissoh Laté Mawuli, Bouglouga Oumboma, Redah Debehoma Venceslas, Kogoe Roland, Gbolou Mawunyo Henoc, Kanake Yendoukoa Yves, Mategnan Pétro, Bagny Aklesso