Article citationsMore>>
Carrier, M.-A., Lefebvre, R., Rivard, C., Parent, M., Ballard, J.-M., Benoit, N., Vigneault, H., Beaudry, C., Malet, X., Laurencelle, M., Gosselin, J.-S., Ladevèze, P., Thériault, R., Beaudin, I., Michaud, A., Pugin, A., Morin, R., Crow, H., Gloaguen, E., Bleser, J., Martin, A. and Lavoie, D. (2013) Portrait des ressources en eau souterraine en Montérégie Est, Québec, Canada. Projet réalisé conjointement par l’INRS, la CGC, l’OBV Yamaska et l’IRDA dans le cadre du Programme d’acquisition de connaissances sur les eaux souterraines, rapport final INRS R-1433, juin 2013, 319 p.
has been cited by the following article:
-
TITLE:
Borehole Heat Budget Calculator: A New Tool for the Quick Exploitation of High-Resolution Temperature Profiles by Hydrogeologists
AUTHORS:
Guillaume Meyzonnat, Florent Barbecot, José Antonio Corcho Alvarado, Jean-Marc Lauzon, Renald McCormack, Antoine Tognelli, Hermann Zeyen, Marina Alazard
KEYWORDS:
Fractured Bedrock Aquifer, High-Resolution Temperature Logging, Heat Budget Modelling, Long Screened Wellbores
JOURNAL NAME:
Journal of Water Resource and Protection,
Vol.11 No.2,
January
30,
2019
ABSTRACT: Distributed temperature sensing is known to provide sharp signals which are very efficient for mapping hydraulically active fractures in wellbores. High-resolution temperature sensing has specifically demonstrated its capacity to characterize very low flows in wellbores. But as sharp as they can be, temperature profiles are often difficult to decipher. The aim of the present work is to provide and to test the “Borehole Heat Budget Calculator” (BHB Calculator), which is implemented as a fast and easy to use tool for the quantitative analysis of depth-temperature profiles. The Calculator is suitable for most pumping and draining configurations, as the heat budget is generalized for modelling multidirectional flow systems within the same wellbore. The formatted worksheet allows the quick exploitation of temperature logs, and is applicable for the characterization of distributed fractures in long screened wellbores. Objectives of the heat modelling are to enhance the readability of complex depth-temperature data, as well as to quantify distribution of inflow intensities and temperatures with depth. The use of heat budget helps to clearly visualize how heat conduction and heat advection contributions are distributed along wellbores profiles. Calculations of inflow temperatures and their evolution through pumping duration is a prerequisite to infer about the nature of aquifer properties (i.e. conduits, distributed or discrete fractures, porous media), as well as to give insight information about the mapping of effective flow paths draining the aquifer. The efficiency and limitations of the BHB Calculator are being tested through high-resolution temperature logging, along with complementary flowmetering and televiewing logging in fractured aquifers located in the St-Lawrence Lowlands, Quebec, Canada.
Related Articles:
-
Casimir Komenan
-
Flor Magali Aguilar López, Dayana Almeida, Yuri Tavares Rocha, Eliziane Carla Scariot, Waldir José Gaspar, Roberto Bonifaz Alfonzo, Elisabete Maria Zanin, Alberto Carvalho Peret, José Eduardo Dos Santos
-
Du Thanh Hang, Than Thi Thanh Tra, Le Minh Tuan, Geoffrey Peter Savage
-
Oswald F. Dan, D. Mathieu Maurice Ahouansou, Luc O. Sintondji
-
Mahamane Adamou, Adamou Ibrahim Maman Lawali, Abdourazak Alio Moussa, Toudou Daouda Abdoul‑Karim, Adamou Aboubacar Kolafane, Douma Soumana, Inoussa Maman Maarouhi, Mahamane Ali, Bakasso Yacoubou