[1]
|
van Hoogstraten, L.M.C., Vrieling, A., van der Heijden, A.G., Kogevinas, M., Richters, A. and Kiemeney, L.A. (2023) Global Trends in the Epidemiology of Bladder Cancer: Challenges for Public Health and Clinical Practice. Nature Reviews Clinical Oncology, 20, 287-304. https://doi.org/10.1038/s41571-023-00744-3
|
[2]
|
Jubber, I., Ong, S., Bukavina, L., Black, P.C., Compérat, E., Kamat, A.M., et al. (2023) Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. European Urology, 84, 176-190. https://doi.org/10.1016/j.eururo.2023.03.029
|
[3]
|
Farling, K.B. (2017) Bladder Cancer: Risk Factors, Diagnosis, and Management. The Nurse Practitioner, 42, 26-33. https://doi.org/10.1097/01.npr.0000512251.61454.5c
|
[4]
|
Olislagers, M., de Jong, F.C., Rutten, V.C., Boormans, J.L., Mahmoudi, T. and Zuiverloon, T.C.M. (2024) Molecular Biomarkers of Progression in Non-Muscle-Invasive Bladder Cancer—Beyond Conventional Risk Stratification. Nature Reviews Urology, 22, 75-91. https://doi.org/10.1038/s41585-024-00914-7
|
[5]
|
Kumbham, S., Md Mahabubur Rahman, K., Foster, B.A. and You, Y. (2025) A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacology & Translational Science, 8, 286-307. https://doi.org/10.1021/acsptsci.4c00663
|
[6]
|
Shore, N.D., Palou Redorta, J., Robert, G., Hutson, T.E., Cesari, R., Hariharan, S., et al. (2021) Non-Muscle-Invasive Bladder Cancer: An Overview of Potential New Treatment Options. Urologic Oncology: Seminars and Original Investigations, 39, 642-663. https://doi.org/10.1016/j.urolonc.2021.05.015
|
[7]
|
Apolo, A.B., Vogelzang, N.J. and Theodorescu, D. (2015) New and Promising Strategies in the Management of Bladder Cancer. American Society of Clinical Oncology Educational Book, 35, 105-112. https://doi.org/10.14694/edbook_am.2015.35.105
|
[8]
|
Patel, V.G., Oh, W.K. and Galsky, M.D. (2020) Treatment of Muscle‐Invasive and Advanced Bladder Cancer in 2020. CA: A Cancer Journal for Clinicians, 70, 404-423. https://doi.org/10.3322/caac.21631
|
[9]
|
Winnicka, A., Brzeszczyńska, J., Saluk, J. and Wigner-Jeziorska, P. (2024) Nanomedicine in Bladder Cancer Therapy. International Journal of Molecular Sciences, 25, Article 10388. https://doi.org/10.3390/ijms251910388
|
[10]
|
Wang, Z., Muthusamy, V., Petrylak, D.P. and Anderson, K.S. (2023) Tackling FGFR3-Driven Bladder Cancer with a Promising Synergistic FGFR/HDAC Targeted Therapy. npj Precision Oncology, 7, Article No. 70. https://doi.org/10.1038/s41698-023-00417-5
|
[11]
|
Saginala, K., Barsouk, A., Aluru, J.S., Rawla, P., Padala, S.A. and Barsouk, A. (2020) Epidemiology of Bladder Cancer. Medical Sciences, 8, Article 15. https://doi.org/10.3390/medsci8010015
|
[12]
|
Lopez-Beltran, A., Cookson, M.S., Guercio, B.J. and Cheng, L. (2024) Advances in Diagnosis and Treatment of Bladder Cancer. BMJ, 384, e076743. https://doi.org/10.1136/bmj-2023-076743
|
[13]
|
Xu, Y., Luo, C., Wang, J., Chen, L., Chen, J., Chen, T., et al. (2021) Application of Nanotechnology in the Diagnosis and Treatment of Bladder Cancer. Journal of Nanobiotechnology, 19, Article No. 393. https://doi.org/10.1186/s12951-021-01104-y
|
[14]
|
Barocas, D.A. and Clark, P.E. (2008) Bladder Cancer. Current Opinion in Oncology, 20, 307-314. https://doi.org/10.1097/cco.0b013e3282f8b03e
|
[15]
|
Fan, J., Chen, B., Luo, Q., Li, J., Huang, Y., Zhu, M., et al. (2024) Potential Molecular Biomarkers for the Diagnosis and Prognosis of Bladder Cancer. Biomedicine & Pharmacotherapy, 173, Article ID: 116312. https://doi.org/10.1016/j.biopha.2024.116312
|
[16]
|
Flores Monar, G.V., Reynolds, T., Gordon, M., Moon, D. and Moon, C. (2023) Molecular Markers for Bladder Cancer Screening: An Insight into Bladder Cancer and FDA-Approved Biomarkers. International Journal of Molecular Sciences, 24, Article 14374. https://doi.org/10.3390/ijms241814374
|
[17]
|
Zhao, C., Cheng, R., Yang, Z. and Tian, Z. (2018) Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules, 23, Article 826. https://doi.org/10.3390/molecules23040826
|
[18]
|
Zhang, Y., Li, M., Gao, X., Chen, Y. and Liu, T. (2019) Nanotechnology in Cancer Diagnosis: Progress, Challenges and Opportunities. Journal of Hematology & Oncology, 12, Article No. 137. https://doi.org/10.1186/s13045-019-0833-3
|
[19]
|
Taneja, N., Alam, A., Patnaik, R.S., Taneja, T., Gupta, S. and K, S.M. (2021) Understanding Nanotechnology in the Treatment of Oral Cancer: A Comprehensive Review. Critical Reviews™ in Therapeutic Drug Carrier Systems, 38, 1-48. https://doi.org/10.1615/critrevtherdrugcarriersyst.2021036437
|
[20]
|
Shi, J., Kantoff, P.W., Wooster, R. and Farokhzad, O.C. (2016) Cancer Nanomedicine: Progress, Challenges and Opportunities. Nature Reviews Cancer, 17, 20-37. https://doi.org/10.1038/nrc.2016.108
|
[21]
|
Kurmi, B.D., Patel, P., Paliwal, R. and Paliwal, S.R. (2020) Molecular Approaches for Targeted Drug Delivery Towards Cancer: A Concise Review with Respect to Nanotechnology. Journal of Drug Delivery Science and Technology, 57, Article ID: 101682. https://doi.org/10.1016/j.jddst.2020.101682
|
[22]
|
Wang, B., Hu, S., Teng, Y., Chen, J., Wang, H., Xu, Y., et al. (2024) Current Advance of Nanotechnology in Diagnosis and Treatment for Malignant Tumors. Signal Transduction and Targeted Therapy, 9, Article No. 200. https://doi.org/10.1038/s41392-024-01889-y
|
[23]
|
Dessale, M., Mengistu, G. and Mengist, H.M. (2022) Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. International Journal of Nanomedicine, 17, 3735-3749. https://doi.org/10.2147/ijn.s378074
|
[24]
|
Liu, Y., Yang, Z., Huang, X., Yu, G., Wang, S., Zhou, Z., et al. (2018) Glutathione-responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano, 12, 8129-8137. https://doi.org/10.1021/acsnano.8b02980
|
[25]
|
Potara, M., Nagy-Simon, T., Craciun, A.M., Suarasan, S., Licarete, E., Imre-Lucaci, F., et al. (2017) Carboplatin-Loaded, Raman-Encoded, Chitosan-Coated Silver Nanotriangles as Multimodal Traceable Nanotherapeutic Delivery Systems and Ph Reporters Inside Human Ovarian Cancer Cells. ACS Applied Materials & Interfaces, 9, 32565-32576. https://doi.org/10.1021/acsami.7b10075
|
[26]
|
Zhang, Y., Ge, X., Gao, S. and Song, J. (2025) Glutathione and Transglutaminase Responsive Janus Gold Nanorods for Photoacoustic Imaging-Guided Radiotherapy and Chemodynamic Therapy of Tumors. Journal of Controlled Release, 380, 751-759. https://doi.org/10.1016/j.jconrel.2025.02.026
|
[27]
|
Klochkov, S.G., Neganova, M.E., Nikolenko, V.N., Chen, K., Somasundaram, S.G., Kirkland, C.E., et al. (2021) Implications of Nanotechnology for the Treatment of Cancer: Recent Advances. Seminars in Cancer Biology, 69, 190-199. https://doi.org/10.1016/j.semcancer.2019.08.028
|
[28]
|
Chaturvedi, V.K., Singh, A., Singh, V.K. and Singh, M.P. (2019) Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Current Drug Metabolism, 20, 416-429. https://doi.org/10.2174/1389200219666180918111528
|
[29]
|
Azizi, M., Dianat‐Moghadam, H., Salehi, R., Farshbaf, M., Iyengar, D., Sau, S., et al. (2020) Interactions between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Advanced Functional Materials, 30, Article ID: 1910402. https://doi.org/10.1002/adfm.201910402
|
[30]
|
Kemp, J.A. and Kwon, Y.J. (2021) Cancer Nanotechnology: Current Status and Perspectives. Nano Convergence, 8, Article No. 34. https://doi.org/10.1186/s40580-021-00282-7
|
[31]
|
de Jong, (2008) Drug Delivery and Nanoparticles: Applications and Hazards. International Journal of Nanomedicine, 3, 133-149. https://doi.org/10.2147/ijn.s596
|
[32]
|
Jin, C., Wang, K., Oppong-Gyebi, A. and Hu, J. (2020) Application of Nanotechnology in Cancer Diagnosis and Therapy—A Mini-Review. International Journal of Medical Sciences, 17, 2964-2973. https://doi.org/10.7150/ijms.49801
|
[33]
|
Juzenas, P., Chen, W., Sun, Y., Coelho, M.A.N., Generalov, R., Generalova, N., et al. (2008) Quantum Dots and Nanoparticles for Photodynamic and Radiation Therapies of Cancer. Advanced Drug Delivery Reviews, 60, 1600-1614. https://doi.org/10.1016/j.addr.2008.08.004
|
[34]
|
Mukherjee, A., Shim, Y. and Myong Song, J. (2015) Quantum Dot as Probe for Disease Diagnosis and Monitoring. Biotechnology Journal, 11, 31-42. https://doi.org/10.1002/biot.201500219
|
[35]
|
Pan, Y., Chang, T., Marcq, G., Liu, C., Kiss, B., Rouse, R., et al. (2017) In Vivo Biodistribution and Toxicity of Intravesical Administration of Quantum Dots for Optical Molecular Imaging of Bladder Cancer. Scientific Reports, 7, Article No. 9309. https://doi.org/10.1038/s41598-017-08591-w
|
[36]
|
Kong, F., Gao, F., Li, H., Liu, H., Zhang, Y., Zheng, R., et al. (2016) CD47: A Potential Immunotherapy Target for Eliminating Cancer Cells. Clinical and Translational Oncology, 18, 1051-1055. https://doi.org/10.1007/s12094-016-1489-x
|
[37]
|
Yuan, R., Rao, T., Cheng, F., Yu, W., Ruan, Y., Zhang, X., et al. (2018) Quantum Dot-Based Fluorescent Probes for Targeted Imaging of the EJ Human Bladder Urothelial Cancer Cell Line. Experimental and Therapeutic Medicine, 16, 4779-4783. https://doi.org/10.3892/etm.2018.6805
|
[38]
|
Frantellizzi, V., Conte, M., Pontico, M., Pani, A., Pani, R. and De Vincentis, G. (2020) New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (Spions): Efficacy, Toxicity, and Future Applications. Nuclear Medicine and Molecular Imaging, 54, 65-80. https://doi.org/10.1007/s13139-020-00635-w
|
[39]
|
Ding, C., Wu, K., Wang, W., Guan, Z., Wang, L., Wang, X., et al. (2016) Synthesis of a Cell Penetrating Peptide Modified Superparamagnetic Iron Oxide and MRI Detection of Bladder Cancer. Oncotarget, 8, 4718-4729. https://doi.org/10.18632/oncotarget.13578
|
[40]
|
Triantafyllou, M., Studer, U.E., Birkhäuser, F.D., Fleischmann, A., Bains, L.J., Petralia, G., et al. (2013) Ultrasmall Superparamagnetic Particles of Iron Oxide Allow for the Detection of Metastases in Normal Sized Pelvic Lymph Nodes of Patients with Bladder and/or Prostate Cancer. European Journal of Cancer, 49, 616-624. https://doi.org/10.1016/j.ejca.2012.09.034
|
[41]
|
Mbeutcha, A., Lucca, I., Mathieu, R., Lotan, Y. and Shariat, S.F. (2016) Current Status of Urinary Biomarkers for Detection and Surveillance of Bladder Cancer. Urologic Clinics of North America, 43, 47-62. https://doi.org/10.1016/j.ucl.2015.08.005
|
[42]
|
Aydin, M., Aydin, E.B. and Sezgintürk, M.K. (2021) Advances in Immunosensor Technology. In: Makowski, G.S., Ed., Advances in Clinical Chemistry, Elsevier, 1-62. https://doi.org/10.1016/bs.acc.2020.08.001
|
[43]
|
Jia, H., Gao, P., Ma, H., Wu, D., Du, B. and Wei, Q. (2015) Preparation of Au-Pt Nanostructures by Combining Top-Down with Bottom-Up Strategies and Application in Label-Free Electrochemical Immunosensor for Detection of NMP22. Bioelectrochemistry, 101, 22-27. https://doi.org/10.1016/j.bioelechem.2014.06.012
|
[44]
|
Ma, H., Zhang, X., Li, X., Li, R., Du, B. and Wei, Q. (2015) Electrochemical Immunosensor for Detecting Typical Bladder Cancer Biomarker Based on Reduced Graphene Oxide-Tetraethylene Pentamine and Trimetallic AuPdPt Nanoparticles. Talanta, 143, 77-82. https://doi.org/10.1016/j.talanta.2015.05.029
|
[45]
|
Shaikh, M.O., Huang, T., Wu, T. and Chuang, C. (2020) Label Free Impedimetric Immunosensor for Effective Bladder Cancer Detection in Clinical Urine Samples. Biomedical Microdevices, 22, Article No. 45. https://doi.org/10.1007/s10544-020-00501-8
|
[46]
|
Eissa, S., Shawky, S.M., Matboli, M., Mohamed, S. and Azzazy, H.M.E. (2014) Direct Detection of Unamplified Hepatoma Upregulated Protein RNA in Urine Using Gold Nanoparticles for Bladder Cancer Diagnosis. Clinical Biochemistry, 47, 104-110. https://doi.org/10.1016/j.clinbiochem.2013.10.022
|
[47]
|
Cheng, D., Han, W., Yang, K., Song, Y., Jiang, M. and Song, E. (2014) One-Step Facile Synthesis of Hyaluronic Acid Functionalized Fluorescent Gold Nanoprobes Sensitive to Hyaluronidase in Urine Specimen from Bladder Cancer Patients. Talanta, 130, 408-414. https://doi.org/10.1016/j.talanta.2014.07.005
|
[48]
|
Nossier, A.I., Eissa, S., Ismail, M.F., Hamdy, M.A. and Azzazy, H.M.E. (2014) Direct Detection of Hyaluronidase in Urine Using Cationic Gold Nanoparticles: A Potential Diagnostic Test for Bladder Cancer. Biosensors and Bioelectronics, 54, 7-14. https://doi.org/10.1016/j.bios.2013.10.024
|
[49]
|
Lien, Z., Hsu, T., Liu, K., Liao, W., Hwang, K. and Chao, J. (2012) Cancer Cell Labeling and Tracking Using Fluorescent and Magnetic Nanodiamond. Biomaterials, 33, 6172-6185. https://doi.org/10.1016/j.biomaterials.2012.05.009
|
[50]
|
Alifu, N., Zebibula, A., Qi, J., Zhang, H., Sun, C., Yu, X., et al. (2018) Single-molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS Nano, 12, 11282-11293. https://doi.org/10.1021/acsnano.8b05937
|
[51]
|
Zhang, Y., Zhang, S., Zhang, Z., Ji, L., Zhang, J., Wang, Q., et al. (2021) Recent Progress on NIR-II Photothermal Therapy. Frontiers in Chemistry, 9, Article 728066. https://doi.org/10.3389/fchem.2021.728066
|
[52]
|
Sang, R., Stratton, B., Engel, A. and Deng, W. (2021) Liposome Technologies towards Colorectal Cancer Therapeutics. Acta Biomaterialia, 127, 24-40. https://doi.org/10.1016/j.actbio.2021.03.055
|
[53]
|
Gulati, M., Grover, M., Singh, S. and Singh, M. (1998) Lipophilic Drug Derivatives in Liposomes. International Journal of Pharmaceutics, 165, 129-168. https://doi.org/10.1016/s0378-5173(98)00006-4
|
[54]
|
Large, D.E., Abdelmessih, R.G., Fink, E.A. and Auguste, D.T. (2021) Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Advanced Drug Delivery Reviews, 176, Article ID: 113851. https://doi.org/10.1016/j.addr.2021.113851
|
[55]
|
Alavi, M. and Hamidi, M. (2019) Passive and Active Targeting in Cancer Therapy by Liposomes and Lipid Nanoparticles. Drug Metabolism and Personalized Therapy, 34, Article ID: 20180032. https://doi.org/10.1515/dmpt-2018-0032
|
[56]
|
Zahednezhad, F., Saadat, M., Valizadeh, H., Zakeri-Milani, P. and Baradaran, B. (2019) Liposome and Immune System Interplay: Challenges and Potentials. Journal of Controlled Release, 305, 194-209. https://doi.org/10.1016/j.jconrel.2019.05.030
|
[57]
|
Hossann, M., Kneidl, B., Peller, M., Lindner, L. and Winter, G. (2014) Thermosensitive Liposomal Drug Delivery Systems: State of the Art Review. International Journal of Nanomedicine, 9, 4387-4398. https://doi.org/10.2147/ijn.s49297
|
[58]
|
Mikhail, A.S., Negussie, A.H., Pritchard, W.F., Haemmerich, D., Woods, D., Bakhutashvili, I., et al. (2017) Lyso-Thermosensitive Liposomal Doxorubicin for Treatment of Bladder Cancer. International Journal of Hyperthermia, 33, 733-740. https://doi.org/10.1080/02656736.2017.1315459
|
[59]
|
Brummelhuis, I.S.G., Simons, M., Lindner, L.H., Kort, S., de Jong, S., Hossann, M., et al. (2021) DPPG2-Based Thermosensitive Liposomes as Drug Delivery System for Effective Muscle-Invasive Bladder Cancer Treatment in Vivo. International Journal of Hyperthermia, 38, 1415-1424. https://doi.org/10.1080/02656736.2021.1983038
|
[60]
|
Vila-Caballer, M., Codolo, G., Munari, F., Malfanti, A., Fassan, M., Rugge, M., et al. (2016) A pH-Sensitive Stearoyl-Peg-Poly(methacryloyl Sulfadimethoxine)-Decorated Liposome System for Protein Delivery: An Application for Bladder Cancer Treatment. Journal of Controlled Release, 238, 31-42. https://doi.org/10.1016/j.jconrel.2016.07.024
|
[61]
|
Larsen, E.S., Joensen, U.N., Poulsen, A.M., Goletti, D. and Johansen, I.S. (2020) Bacillus Calmette-Guérin Immunotherapy for Bladder Cancer: A Review of Immunological Aspects, Clinical Effects and BCG Infections. APMIS, 128, 92-103. https://doi.org/10.1111/apm.13011
|
[62]
|
Leamon, C.P. and Low, P.S. (2001) Folate-Mediated Targeting: From Diagnostics to Drug and Gene Delivery. Drug Discovery Today, 6, 44-51. https://doi.org/10.1016/s1359-6446(00)01594-4
|
[63]
|
Yoon, H.Y., Yang, H.M., Kim, C.H., Goo, Y.T., Hwang, G.Y., Chang, I.H., et al. (2019) Enhanced Intracellular Delivery of BCG Cell Wall Skeleton into Bladder Cancer Cells Using Liposomes Functionalized with Folic Acid and Pep-1 Peptide. Pharmaceutics, 11, Article 652. https://doi.org/10.3390/pharmaceutics11120652
|
[64]
|
Gottardi, R. and Douradinha, B. (2013) Carbon Nanotubes as a Novel Tool for Vaccination against Infectious Diseases and Cancer. Journal of Nanobiotechnology, 11, Article No. 30. https://doi.org/10.1186/1477-3155-11-30
|
[65]
|
Jampilek, J. and Kralova, K. (2021) Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials, 14, Article 1059. https://doi.org/10.3390/ma14051059
|
[66]
|
Ranjbari, S., Bolourinezhad, M., Kesharwani, P., Rezayi, M. and Sahebkar, A. (2024) Applications of Carbon Nanotube Biosensors: Sensing the Future. Journal of Drug Delivery Science and Technology, 97, Article ID: 105747. https://doi.org/10.1016/j.jddst.2024.105747
|
[67]
|
Kumar, S., Ansari, A., Basu, M., Ghosh, S., Begam, S. and Ghosh, M.K. (2024) Carbon Nanotubes in Cancer Diagnosis and Treatment: Current Trends and Future Perspectives. Advanced Therapeutics, 8, Article ID: 2400283. https://doi.org/10.1002/adtp.202400283
|
[68]
|
Naief, M.F., Mohammed, S.N. and Mohammed, A.M. (2024) Carbon Nanotubes: A Review on Synthesis and Drug Delivery for Cancer Treatment. Inorganic Chemistry Communications, 159, Article ID: 111694. https://doi.org/10.1016/j.inoche.2023.111694
|
[69]
|
Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., et al. (2013) Carbon Nanotubes for Delivery of Small Molecule Drugs. Advanced Drug Delivery Reviews, 65, 1964-2015. https://doi.org/10.1016/j.addr.2013.08.005
|
[70]
|
Virani, N.A., Davis, C., McKernan, P., Hauser, P., Hurst, R.E., Slaton, J., et al. (2017) Phosphatidylserine Targeted Single-Walled Carbon Nanotubes for Photothermal Ablation of Bladder Cancer. Nanotechnology, 29, Article ID: 035101. https://doi.org/10.1088/1361-6528/aa9c0c
|
[71]
|
Tang, L., Xiao, Q., Mei, Y., He, S., Zhang, Z., Wang, R., et al. (2021) Insights on Functionalized Carbon Nanotubes for Cancer Theranostics. Journal of Nanobiotechnology, 19, Article No. 423. https://doi.org/10.1186/s12951-021-01174-y
|
[72]
|
Suo, N., Wang, M., Jin, Y., Ding, J., Gao, X., Sun, X., et al. (2019) Magnetic Multiwalled Carbon Nanotubes with Controlled Release of Epirubicin: An Intravesical Instillation System for Bladder Cancer. International Journal of Nanomedicine, 14, 1241-1254. https://doi.org/10.2147/ijn.s189688
|
[73]
|
Li, Y., Thambi, T. and Lee, D.S. (2017) Co-Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Advanced Healthcare Materials, 7, Article ID: 1700886. https://doi.org/10.1002/adhm.201700886
|
[74]
|
Sartaj, A., Qamar, Z., Qizilbash, F.F., Annu,, Md, S., Alhakamy, N.A., et al. (2021) Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers, 13, Article 4400. https://doi.org/10.3390/polym13244400
|
[75]
|
Chang, D., Ma, Y., Xu, X., Xie, J. and Ju, S. (2021) Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 9, Article 707319. https://doi.org/10.3389/fbioe.2021.707319
|
[76]
|
Martin, D.T., Steinbach, J.M., Liu, J., Shimizu, S., Kaimakliotis, H.Z., Wheeler, M.A., et al. (2014) Surface-Modified Nanoparticles Enhance Transurothelial Penetration and Delivery of Survivin siRNA in Treating Bladder Cancer. Molecular Cancer Therapeutics, 13, 71-81. https://doi.org/10.1158/1535-7163.mct-13-0502
|
[77]
|
Ambrosio, L., Argenziano, M., Cucci, M.A., Grattarola, M., de Graaf, I.A.M., Dianzani, C., et al. (2020) Carbosilane Dendrimers Loaded with siRNA Targeting NRF2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants, 9, Article 993. https://doi.org/10.3390/antiox9100993
|
[78]
|
Kuchur, O.A., Tsymbal, S.A., Shestovskaya, M.V., Serov, N.S., Dukhinova, M.S. and Shtil, A.A. (2020) Metal-Derived Nanoparticles in Tumor Theranostics: Potential and Limitations. Journal of Inorganic Biochemistry, 209, Article ID: 111117. https://doi.org/10.1016/j.jinorgbio.2020.111117
|
[79]
|
Zhou, Z., Zhao, J., Di, Z., Liu, B., Li, Z., Wu, X., et al. (2021) Core-Shell Gold Nanorod@Mesoporous-MOF Heterostructures for Combinational Phototherapy. Nanoscale, 13, 131-137. https://doi.org/10.1039/d0nr07681c
|
[80]
|
Mousavi, S.M., Zarei, M., Hashemi, S.A., Ramakrishna, S., Chiang, W., Lai, C.W., et al. (2020) Gold Nanostars-Diagnosis, Bioimaging and Biomedical Applications. Drug Metabolism Reviews, 52, 299-318. https://doi.org/10.1080/03602532.2020.1734021
|
[81]
|
Zhang, F., Zhu, X., Gong, J., Sun, Y., Chen, D., Wang, J., et al. (2016) Lysosome-Mitochondria-Mediated Apoptosis Specifically Evoked in Cancer Cells Induced by Gold Nanorods. Nanomedicine, 11, 1993-2006. https://doi.org/10.2217/nnm-2016-0139
|
[82]
|
Zhang, F., Hou, Y., Zhu, M., Deng, B., Zhao, M., Zhu, X., et al. (2021) Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods. Advanced Science, 8, Article ID: 2102666. https://doi.org/10.1002/advs.202102666
|
[83]
|
Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., et al. (2018) Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomedicine & Pharmacotherapy, 106, 1098-1107. https://doi.org/10.1016/j.biopha.2018.07.049
|
[84]
|
Hsu, C., Cheng, N., Liao, M., Cheng, T. and Chiu, Y. (2020) Development of Folic Acid-Conjugated and Methylene Blue-Adsorbed Au@Tna Nanoparticles for Enhanced Photodynamic Therapy of Bladder Cancer Cells. Nanomaterials, 10, Article 1351. https://doi.org/10.3390/nano10071351
|
[85]
|
Doughty, A.C.V., Hoover, A.R., Layton, E., Murray, C.K., Howard, E.W. and Chen, W.R. (2019) Nanomaterial Applications in Photothermal Therapy for Cancer. Materials, 12, Article 779. https://doi.org/10.3390/ma12050779
|
[86]
|
Yang, X., Su, L., La Rosa, F.G., Smith, E.E., Schlaepfer, I.R., Cho, S.K., et al. (2017) The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model. Bladder Cancer, 3, 201-210. https://doi.org/10.3233/blc-170096
|
[87]
|
Cheong, J.K., Popov, V., Alchera, E., Locatelli, I., Alfano, M., Menichetti, L., et al. (2021) A Numerical Study to Investigate the Effects of Tumour Position on the Treatment of Bladder Cancer in Mice Using Gold Nanorods Assisted Photothermal Ablation. Computers in Biology and Medicine, 138, Article ID: 104881. https://doi.org/10.1016/j.compbiomed.2021.104881
|
[88]
|
Babaye Abdollahi, B., Malekzadeh, R., Pournaghi Azar, F., Salehnia, F., Naseri, A.R., Ghorbani, M., et al. (2020) Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic Review. Advanced Pharmaceutical Bulletin, 11, 212-223. https://doi.org/10.34172/apb.2021.025
|
[89]
|
Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. and Chen, G. (2015) Silver Nanoparticles: Synthesis, Properties, and Therapeutic Applications. Drug Discovery Today, 20, 595-601. https://doi.org/10.1016/j.drudis.2014.11.014
|
[90]
|
Zhao, X., Qi, T., Kong, C., Hao, M., Wang, Y., Li, J., et al. (2018) Photothermal Exposure of Polydopamine-Coated Branched Au-Ag Nanoparticles Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Human Bladder Cancer Cells. International Journal of Nanomedicine, 13, 6413-6428. https://doi.org/10.2147/ijn.s174349
|
[91]
|
Castiglioni, S., Cazzaniga, A., Perrotta, C. and Maier, J.A.M. (2015) Silver Nanoparticles-Induced Cytotoxicity Requires ERK Activation in Human Bladder Carcinoma Cells. Toxicology Letters, 237, 237-243. https://doi.org/10.1016/j.toxlet.2015.06.1707
|
[92]
|
U.S. National Library of Medicine (2025) Clinical Trials.gov. https://www.clinicaltrials.gov/
|