[1]
|
Viswanathan, V.S., Toro, P., Corredor, G., Mukhopadhyay, S. and Madabhushi, A. (2022) The State of the Art for Artificial Intelligence in Lung Digital Pathology. The Journal of Pathology, 257, 413-429. https://doi.org/10.1002/path.5966
|
[2]
|
Dack, E., Christe, A., Fontanellaz, M., et al. (2023) Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis. Investigative Radiology, 58, 602-609. https://doi.org/10.1097/RLI.0000000000000974
|
[3]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[4]
|
Fitzmaurice, C. and Global Burden of Disease Cancer Collaboration (2018) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. Journal of Clinical Oncology, 36, 1553-1568. https://doi.org/10.1200/JCO.2018.36.15_suppl.1568
|
[5]
|
Bi, W.L., Hosny, A., Schabath, M.B., et al. (2019) Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA: A Cancer Journal for Clinicians, 69, 127-157. https://doi.org/10.3322/caac.21552
|
[6]
|
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., et al. (2014) Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, Article No. 4644. https://doi.org/10.1038/ncomms5644
|
[7]
|
Hosny, A., Parmar, C., Coroller, T.P., Grossmann, P., Zeleznik, R., Kumar, A., et al. (2018) Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study. PLOS Medicine, 15, e1002711. https://doi.org/10.1371/journal.pmed.1002711
|
[8]
|
Lee, J.H., Ha, E.J., Kim, D., Jung, Y.J., Heo, S., Jang, Y.-H., An, S.H. and Lee, K. (2020) Application of Deep Learning to the Diagnosis of Cervical Lymph Node Metastasis from Thyroid Cancer with CT: External Validation and Clinical Utility for Resident Training. European Radiology, 30, 3066-3072. https://doi.org/10.1007/s00330-019-06652-4
|
[9]
|
Sun, Q., Lin, X., Zhao, Y., et al. (2020) Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don’t Forget the Peritumoral Region. Frontiers in Oncology, 10, 10-53. https://doi.org/10.3389/fonc.2020.00053
|
[10]
|
Dong, D., Fang, M.J., Tang, L., et al. (2020) Deep Learning Radiomic Nomogram Can Predict the Number of Lymph Node Metastasis in Locally Advanced Gastric Cancer: An International Multicenter Study. Annals of Oncology, 31, 912-920. https://doi.org/10.1016/j.annonc.2020.04.003
|
[11]
|
Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A. and Kim, D. (2015) Methods of Integrating Data to Uncover Genotype—Phenotype Interactions. Nature Reviews Genetics, 16, 85-97. https://doi.org/10.1038/nrg3868
|
[12]
|
Chen, R., Mias, G.I., Li-Pook-Than, J., et al. (2012) Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell, 148, 1293-1307. https://doi.org/10.1016/j.cell.2012.02.009
|
[13]
|
Wiens, J., Saria, S., Sendak, M., et al. (2019) Do No Harm: A Roadmap for Responsible Machine Learning for Health Care. Nature Medicine, 25, 1337-1340. https://doi.org/10.1038/s41591-019-0548-6
|
[14]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
|
[15]
|
Shu, X., Zhang, L., Wang, Z., Lv, Q. and Yi, Z. (2020) Deep Neural Networks with Region-Based Pooling Structures for Mammographic Image Classification. IEEE Transactions on Medical Imaging, 39, 2246-2255. https://doi.org/10.1109/TMI.2020.2968397
|
[16]
|
Schmidhuber, J. (2015) Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
|
[17]
|
Min, S., Lee, B. and Yoon, S. (2016) Deep Learning in Bioinformatics. Briefings in Bioinformatics, 18, 851-869. https://doi.org/10.1093/bib/bbw068
|
[18]
|
Mamoshina, P.,Vieira, A., Putin, E. and Zhavoronkov, A. (2016) Applications of Deep Learning in Biomedicine. Molecular Pharmaceutics, 13, 1445-1454. https://doi.org/10.1021/acs.molpharmaceut.5b00982
|
[19]
|
Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S. and Acharya, U.R. (2018) Deep Learning for Healthcare Applications Based on Physiological Signals: A Review. Computer Methods and Programs in Biomedicine, 161, 1-13. https://doi.org/10.1016/j.cmpb.2018.04.005
|
[20]
|
Kather, J.N., Pearson, A.T., Halama, N., Jäger, D., Krause, J., Loosen, S.H., et al. (2019) Deep Learning Can Predict Microsatellite Instability Directly from Histology in Gastrointestinal Cancer. Nature Medicine, 25, 1054-1056. https://doi.org/10.1038/s41591-019-0462-y
|
[21]
|
Chemi, F., Rothwell, D.G., McGranahan, N., Gulati, S., Abbosh, C., Pearce, S.P., et al. (2019) Pulmonary Venous Circulating Tumor Cell Dissemination before Tumor Resection and Disease Relapse. Nature Medicine, 25, 1534-1539. https://doi.org/10.1038/s41591-019-0593-1
|
[22]
|
Pao, W. and Girard, N. (2011) New Driver Mutations in Non-Small-Cell Lung Cancer. The Lancet Oncology, 12, 175-180. https://doi.org/10.1016/S1470-2045(10)70087-5
|
[23]
|
Rajpurkar, P., Chen, E., Banerjee, O. and Topol, E.J. (2022) AI in Health and Medicine. Nature Medicine, 28, 31-38. https://doi.org/10.1038/s41591-021-01614-0
|
[24]
|
Luo, X., Zang, X., Yang, L., Huang, J., Liang, F., Rodriguez-Canales, J., et al. (2017) Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis. Journal of Thoracic Oncology, 12, 501-509. https://doi.org/10.1016/j.jtho.2016.10.017
|
[25]
|
Shreyesh, D., Robin, G.Q. and Youakim, B. (2021) Lung Cancer Survival Period Prediction and Understanding: Deep Learning Approaches. International Journal of Medical Informatics, 148, Article 104371. https://doi.org/10.1016/j.ijmedinf.2020.104371
|
[26]
|
Hyungjin, K., Jin, M.G., Kyung, H.L., Kim, Y.T. and Park, C.M. (2020) Preoperative CT-Based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Radiology, 296, 216-224. https://doi.org/10.1148/radiol.2020192764
|
[27]
|
Paul, R., Hawkins, S.H., Balagurunathan, Y., et al. (2016) Deep Feature Transfer Learning in Combination, with Traditional Features Predicts Survival among Patients with Lung Adenocarcinoma. Tomography, 2, 388-395. https://doi.org/10.18383/j.tom.2016.00211
|
[28]
|
Samanthula, R. (2024) Application of Convolutional Neural Networks in Classification of GBM for Enhanced Prognosis. Advances in Bioscience and Biotechnology, 15, 91-99. https://doi.org/10.4236/abb.2024.152006
|
[29]
|
Gao, R.T., Yuan, X., Ma, Y., Johnston, L., et al. (2024) Harnessing TME Depicted by Histological Images to Improve Cancer Prognosis through a Deep Learning System. Cell Reports Medicine, 5, Article 101536. https://doi.org/10.1016/j.xcrm.2024.101536
|
[30]
|
Gu, B., Meng, M., Bi, L., Kim, J., Feng, D.D. and Song, S. (2022) Predictionof5-Year Progression-Free Survival in Advanced Nasopharyngeal Carcinoma with Pretreatment PET/CT Using Multi-Modality Deep Learning-Based Radiomics. Frontiers in Oncology, 12, Article 899351. https://doi.org/10.3389/fonc.2022.899351
|
[31]
|
Howlader, N., Forjaz, G., Mooradian, M.J., et al. (2020) The Effect of Advances in Lung-Cancer Treatment on Population Mortality. The New England Journal of Medicine, 383, 640-649. https://doi.org/10.1056/NEJMoa1916623
|
[32]
|
Miller, K.D., Nogueira, L., Mariotto, A.B., et al. (2019) Cancer Treatment and Survivorship Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 363-385. https://doi.org/10.3322/caac.21565
|
[33]
|
Singhal, S., Vachani, A., Antin-Ozerkis, D., Kaiser, L.R. and Albelda, S.M. (2005) Prognostic Implications of Cell Cycle, Apoptosis, and Angiogenesis Biomarkers in Non-Small Cell Lung Cancer: A Review. Clinical Cancer Research, 11, 3974-3986. https://doi.org/10.1158/1078-0432.CCR-04-2661
|
[34]
|
Litière, S., Collette, S., de Vries, E.G., Seymour, L. and Bogaerts, J. (2017) RECIST-Learning from the Past to Build the Future. Nature Reviews Clinical Oncology, 14, 187-192. https://doi.org/10.1038/nrclinonc.2016.195
|
[35]
|
Li, S., Li, W., Ma, T., et al. (2022) Assessing the Efficacy of Immunotherapy in Lung Squamous Carcinoma Using Artificial Intelligence Neural Network. Frontiers in Immunology, 13, Article 1024707. https://doi.org/10.3389/fimmu.2022.1024707
|
[36]
|
Li, W., Fu, S., Gao, X., et al. (2023) Immunotherapy Efficacy Predictive Tool for Lung Adenocarcinoma Based on Neural Network. Frontiers in Immunology, 14, Article 1141408. https://doi.org/10.3389/fimmu.2023.1141408
|
[37]
|
Mehlen, P. and Puisieux, A. (2006) Metastasis: A Question of Life or Death. Nature Reviews Cancer, 6, 449-458. https://doi.org/10.1038/nrc1886
|
[38]
|
Wu, J., Aguilera, T., Shultz, D., et al. (2016) Early-Stage Nonsmall Cell Lung Cancer: Quantitative Imaging Characteristics of 18F Fluorodeoxyglucose PET/CT Allow Prediction of Distant Metastasis. Radiology, 281, 270-278. https://doi.org/10.1148/radiol.2016151829
|
[39]
|
Zhou, H., Dong, D., Chen, B., et al. (2018) Diagnosis of Distant Metastasis of Lung Cancer: Based on Clinical and Radiomic Features. Translational Oncology, 11, 31-36. https://doi.org/10.1016/j.tranon.2017.10.010
|
[40]
|
Tau, N., Stundzia, A., Yasufuku, K., et al. (2020) Convolutional Neural Networks in Predicting Nodal and Distant Metastatic Potential of Newly Diagnosed Non-Small Cell Lung Cancer on FDG PET Images. American Journal of Roentgenology, 215, 192-197. https://doi.org/10.2214/AJR.19.22346
|
[41]
|
Xu, Y., Hosny, A., Zeleznik, R., et al. (2019) Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Clinical Cancer Research, 25, 3266-3275. https://doi.org/10.1158/1078-0432.CCR-18-2495
|
[42]
|
Petitprez, F., Vano, Y.A., Becht, E., Giraldo, N.A., de Reyniès, A., Sautès-Fridman, C. and Fridman, W.H. (2018) Transcriptomic Analysis of the Tumor Microenvironment to Guide Prognosis and Immuno-Therapies. Cancer Immunology, Immunotherapy, 67, 981-988. https://doi.org/10.1007/s00262-017-2058-z
|
[43]
|
Qi, C., Cai, Y., Qian, K., et al. (2023) GutMDisorder v2.0: A Comprehensive Database for Dysbiosis of Gut Microbiota in Phenotypes and Interventions. Nucleic Acids Research, 51, D717-D722. https://doi.org/10.1093/nar/gkac871
|
[44]
|
Wu, K., Xu, L. and Cheng, L. (2021) PAR2 Promoter Hypomethylation Regulates PAR2 Gene Expression and Promotes Lung Adenocarcinoma Cell Progression. Computational and Mathematical Methods in Medicine, 2021, Article 5542485. https://doi.org/10.1155/2021/5542485
|
[45]
|
Albaradei, S., Napolitano, F., Thafar, M.A., et al. (2021) Meta Cancer: A Deep Learning-Based Pan-Cancer Metastasis Prediction Model Developed Using Multi-Omics data. Computational and Structural Biotechnology Journal, 19, 4404-4411. https://doi.org/10.1016/j.csbj.2021.08.006
|
[46]
|
Liu, D., Yao, L., Ding, X. and Zhou, H. (2023) Multi-Omics Immune Regulatory Mechanisms in Lung Adenocarcinoma Metastasis and Survival Time. Computers in Biology and Medicine, 164, Article 107333. https://doi.org/10.1016/j.compbiomed.2023.107333
|
[47]
|
Sturgeon, K.M., Deng, L., Bluethmann, S.M., et al. (2019) A Population-Based Study of Cardiovascular Disease Mortality Risk in US Cancer Patients. European Heart Journal, 40, 3889-3897. https://doi.org/10.1093/eurheartj/ehz766
|
[48]
|
Chao, H., Shan, H., Homayounieh, F., Singh, R., Khera, R.D., Guo, H., et al. (2021) Deep Learning Predicts Cardiovascular Disease Risks from Lung Cancer Screening Low Dose Computed Tomography. Nature Communications, 12, Article No. 2963. https://doi.org/10.1038/s41467-021-23235-4
|
[49]
|
Liang, B., Tian, Y., Chen, X., et al. (2020) Prediction of Radiation Pneumonitis with Dose Distribution: A Convolutional Neural Network (CNN) Based Model. Frontiers in Oncology, 9, Article 1500. https://doi.org/10.3389/fonc.2019.01500
|
[50]
|
Cui, S., Ten Haken, R.K. and El Naqa, I. (2021) Integrating Multiomics Information in Deep Learning Architectures for Joint Actuarial Outcome Prediction in Non-Small CELL Lung Cancer Patients after Radiation Therapy. International Journal of Radiation Oncology, Biology, Physics, 110, 893-904. https://doi.org/10.1016/j.ijrobp.2021.01.042
|
[51]
|
Bang, Y.H., Choi, Y.H., Park, M., Shin, S.-Y. and Kim, S.J. (2023) Clinical Relevance of Deep Learning Models in Predicting the Onset Timing of Cancer Pain Exacerbation. Scientific Reports, 13, Article No. 11501. https://doi.org/10.1038/s41598-023-37742-5
|