[1]
|
Lu, X., Zhang, L., Yu, H., Lu, Z., He, J., Zheng, J., et al. (2021) Achieving Superior Hydrogen Storage Properties of MgH2 by the Effect of TiFe and Carbon Nanotubes. Chemical Engineering Journal, 422, Article ID: 130101. https://doi.org/10.1016/j.cej.2021.130101
|
[2]
|
Ahmad, M.A.N., Sazelee, N., Ali, N.A. and Ismail, M. (2022) An Overview of the Recent Advances of Additive-Improved Mg(BH4)2 for Solid-State Hydrogen Storage Material. Energies, 15, Article 862. https://doi.org/10.3390/en15030862
|
[3]
|
Xia, Y., Yang, Z. and Zhu, Y. (2013) Porous Carbon-Based Materials for Hydrogen Storage: Advancement and Challenges. Journal of Materials Chemistry A, 1, 9365-9381. https://doi.org/10.1039/c3ta10583k
|
[4]
|
Zhao, D., Wang, X., Yue, L., He, Y. and Chen, B. (2022) Porous Metal-Organic Frameworks for Hydrogen Storage. Chemical Communications, 58, 11059-11078. https://doi.org/10.1039/d2cc04036k
|
[5]
|
El Kharbachi, A., Dematteis, E.M., Shinzato, K., Stevenson, S.C., Bannenberg, L.J., Heere, M., et al. (2020) Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. The Journal of Physical Chemistry C, 124, 7599-7607. https://doi.org/10.1021/acs.jpcc.0c01806
|
[6]
|
Ali, N.A. and Ismail, M. (2021) Modification of NaAlH4 Properties Using Catalysts for Solid-State Hydrogen Storage: A Review. International Journal of Hydrogen Energy, 46, 766-782. https://doi.org/10.1016/j.ijhydene.2020.10.011
|
[7]
|
Sazelee, N.A. and Ismail, M. (2021) Recent Advances in Catalyst-Enhanced Lialh4 for Solid-State Hydrogen Storage: A Review. International Journal of Hydrogen Energy, 46, 9123-9141. https://doi.org/10.1016/j.ijhydene.2020.12.208
|
[8]
|
Ali, N.A., Sazelee, N.A. and Ismail, M. (2021) An Overview of Reactive Hydride Composite (RHC) for Solid-State Hydrogen Storage Materials. International Journal of Hydrogen Energy, 46, 31674-31698. https://doi.org/10.1016/j.ijhydene.2021.07.058
|
[9]
|
Jin, J., Yang, H.M., Quan, Y.W., Wang, W. and Wu, S.X. (2023) Research Progress in Carbon-Based Hydrogen Storage Materials Based on Physical Adsorption. Coal Processing and Comprehensive Utilization, 8, 74.
|
[10]
|
Liu, H.M., Xu, X.Y., Zhang, L.X., Wu, J.J. and Liu, D.B. (2021) Research Progress of Hydrogen Storage Technology. Potrochemical Industry Technology, 50, 1101.
|
[11]
|
Li, J.S., Ren, C.X., Luo, Z. and Chen, H.X. (2022) Technological Progress on the Research and Development of Solid Hydrogen Storage Materials. Oil and Gas Energy, 34, 14.
|
[12]
|
Tong, Y.H., Wang, J.Y., Hao, Z.Y., Liu, B.Q., Lin, W. and Su, L.Y. (2023) Review of the Development of Hydrogen Storage Technology in Space Propulsion. Aerospace Technology, 4, 11.
|
[13]
|
Wang, Y.X., Zhong, S.B. and Sun, F.C. (2022) Research Progress in Vehicular High Mass Density Solid Hydrogen Storage Materials. Rare Metals, 46, 796.
|
[14]
|
Kazakov, A.N., Bodikov, V.Y. and Blinov, D.V. (2021) Electrochemical Properties of Ab5type La0.8Ce0.2Ni4Co0.5Mn0.3Al0.2 Alloy for Unified Metal Hydride Fuel Cell. IOP Conference Series: Materials Science and Engineering, 1035, Article ID: 012016. https://doi.org/10.1088/1757-899x/1035/1/012016
|
[15]
|
Ma, T.X., Gao, L.Z., Hu, M.J., Hu, L.W., Wen, L.Y. and Hu, M.L. (2018) Research Progress of Solid Hydrogen Storage Materials. Journal of Functional Materials, 49, 4001-4006.
|
[16]
|
Zhang, X.F., Jiang, L.J., Ye, J.H., Wu,Y.F., Guo, X.M., Li, Z.N. and Li, H.W. (2022) Research Progress of Solid State Hydrogen Storage Technology. Acta Energiae Solaris Sinica, 43, 345.
|
[17]
|
Wang, L., Yan, H.Z. and Wu, J.M. (2018) Research and Development Status of Rare Earth Hydrogen Storage Alloys. Rare Earths Statistics and Information, 3, 8.
|
[18]
|
Yong, H., Li, Y.C., Hu, J.F., Gao, J.L. and Wang, S. (2021) Research Research of Mg-Based Hydrogen Storage Material. Metallic Functional Materials, 28, 50.
|
[19]
|
Hu, L., Li, J.P., Zhao, X., Li, J.H. and Chen, J. (2018) Effect of Chemically Deposited Polypyrrole on Electrochemical Kinetic Properties of LaNi3.81Mn0.3Co0.79Al0.1 Hydrogen Storage Alloy. Chinese Rare Metals, 39, 34-42.
|
[20]
|
Li, Z., Li, S., Yuan, Z., Zhang, Y. and Qi, Y. (2019) Microstructure, Hydrogen Storage Thermodynamics and Kinetics of La5Mg95-xNix (x = 5, 10, 15) Alloys. Transactions of Nonferrous Metals Society of China, 29, 1057-1066. https://doi.org/10.1016/s1003-6326(19)65014-4
|
[21]
|
Hu, F., Luo, L.R., Li, Y.Z., Zhuo, T.T., Zhao, X. and Zhang, Y.H. (2019) Investigations in Electrochemical Thermodynamic and Kinetic Properties of AS-Cast and AS-Quenched CeMg10Ni2 Hydrogen Storage Alloys. Journal of Electrochemistry, 25, 631-638.
|
[22]
|
Zhu, M. and Ou, Y.L.Z. (2021) Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys. Acta Metallurgica Sinica, 57, 1416.
|
[23]
|
Fu, K.K., Zhao, X., Ke, D.D., Qi, Y.T., Hu, F., Cai, Y., Yan, H.P. and Duan, Y.N. (2023) Effect of Ce Sub-Stitution for La on the Hydrogen Storage Properties and Thermodynamics of Alloy LaNi4.5Al0.5. Chinese Rare Earths, 44, 86.
|
[24]
|
Zeng, L.Y., Zhang, S.Y., Li, Q., Qi, Y.L., Li, S.L., Xin, S.W., Mao, C.L., Zhang, B.J. and Cai, J.H. (2022) Research Progress on Ti-Based Hydrogen Storage Alloy. Ti Industry Progress, 39, 39.
|
[25]
|
Xu, W., Tao, Z.L. and Chen, J. (2006) Progress of Research on Hydrogen Storage. Progress in Chemistry, 18, 200.
|
[26]
|
Yang, C.Z. (2020) The Characters and Mechanism Research of Hydrogen Absorption/Desorption Kinetics for Alloy Hydrogen Storage Materials. Material Sciences, 10, 1002-1026. https://doi.org/10.12677/ms.2020.1012120
|
[27]
|
Li, Q. (2022) Review on the Development of Rare Earth Hydrogen Storage Materials. Rare Earth Information, 3, 36.
|
[28]
|
Li, Y., Zhang, L. and Han, S.M. (2020) Rare Earth—Mg-Ni Superlattice Alloy Structure Research and Progress on Hydrogen Storage Properties. Journal of Yanshan University, 44, 323.
|
[29]
|
Ouyang, L., Huang, J., Wang, H., Liu, J. and Zhu, M. (2017) Progress of Hydrogen Storage Alloys for Ni-Mh Rechargeable Power Batteries in Electric Vehicles: A Review. Materials Chemistry and Physics, 200, 164-178. https://doi.org/10.1016/j.matchemphys.2017.07.002
|
[30]
|
Tan, C., Ouyang, L., Wang, H., Min, D., Liao, C., Xiao, F., et al. (2020) Effect of Y Substitution on the High Rate Dischargeability of AB4.6 Alloys as an Electrode Material for Nickel Metal Hydride Batteries. Journal of Alloys and Compounds, 849, Article ID: 156641. https://doi.org/10.1016/j.jallcom.2020.156641
|
[31]
|
Kazakov, A.N., Blinov, D.V., Bodikov, V.Y., Mitrokhin, S.V. and Volodin, A.A. (2021) Hydrogen Storage and Electrochemical Properties of Annealed Low-Co AB5 Type Intermetallic Compounds. International Journal of Hydrogen Energy, 46, 13622-13631. https://doi.org/10.1016/j.ijhydene.2020.12.071
|
[32]
|
Han, X., Wu, W., Bian, X., Liu, X., Huang, L. and Wu, J. (2016) A Performance Study of AB5 Hydrogen Storage Alloys with Co Being Replaced by Be-Cu. International Journal of Hydrogen Energy, 41, 7445-7452. https://doi.org/10.1016/j.ijhydene.2016.03.100
|
[33]
|
Chen, X., Xu, J., Zhang, W., Zhu, S., Zhang, N., Ke, D., et al. (2021) Effect of Mn on the Long-Term Cycling Performance of AB5-Type Hydrogen Storage Alloy. International Journal of Hydrogen Energy, 46, 21973-21983. https://doi.org/10.1016/j.ijhydene.2021.04.021
|
[34]
|
Zhou, W., Zhu, D., Tang, Z., Wu, C., Huang, L., Ma, Z., et al. (2017) Improvement in Low-Temperature and Instantaneous High-Rate Output Performance of Al-Free AB5-Type Hydrogen Storage Alloy for Negative Electrode in Ni/MH Battery: Effect of Thermodynamic and Kinetic Regulation via Partial Mn Substituting. Journal of Power Sources, 343, 11-21. https://doi.org/10.1016/j.jpowsour.2017.01.023
|
[35]
|
Xu, J., Chen, X., Zhu, W., Zhang, W., Cui, H., Zhu, S., et al. (2022) Enhanced Cycling Stability and Reduced Hysteresis of AB5-Type Hydrogen Storage Alloys by Partial Substitution of Sn for Ni. International Journal of Hydrogen Energy, 47, 22495-22509. https://doi.org/10.1016/j.ijhydene.2022.05.071
|
[36]
|
Zhou, W., Zhu, D., Liu, K., Li, J., Wu, C. and Chen, Y. (2018) Long-Life Ni-MH Batteries with High-Power Delivery at Lower Temperatures: Coordination of Low-Temperature and High-Power Delivery with Cycling Life of Low-Al AB5-Type Hydrogen Storage Alloys. International Journal of Hydrogen Energy, 43, 21464-21477. https://doi.org/10.1016/j.ijhydene.2018.09.166
|
[37]
|
Chen, M., Tan, C., Jiang, W., Huang, J., Min, D., Liao, C., et al. (2021) Influence of Over-Stoichiometry on Hydrogen Storage and Electrochemical Properties of Sm-Doped Low-Co AB5-Type Alloys as Negative Electrode Materials in Nickel-Metal Hydride Batteries. Journal of Alloys and Compounds, 867, Article ID: 159111. https://doi.org/10.1016/j.jallcom.2021.159111
|
[38]
|
Panwar, K. and Srivastava, S. (2019) On Structural Model of AB5-Type Multi-Element Hydrogen Storage Alloy. International Journal of Hydrogen Energy, 44, 30208-30217. https://doi.org/10.1016/j.ijhydene.2019.09.138
|
[39]
|
Yao, Q., Tang, Y., Zhou, H., Deng, J., Wang, Z., Pan, S., et al. (2014) Effect of Rapid Solidification Treatment on Structure and Electrochemical Performance of Low-Co AB5-Type Hydrogen Storage Alloy. Journal of Rare Earths, 32, 526-531. https://doi.org/10.1016/s1002-0721(14)60103-4
|
[40]
|
Zhu, X.M., Liu, Z.P., Wang, Y.G., Jing, Y.Q., Luo, T.Z., Li, Q. and Xu, Y.Y. (2022) Study on Annealing Process of MlNi4.57Co0.17Mn0.25Al0.41Y0.02 Low Co and Long Life Hydrogen Storage Alloy. Hot Working Technology, 53, 46-50.
|
[41]
|
Lv, L.J., Lin, J., Yang, G., Ma, Z.W., et al. (2022) Hydrogen Storage Performance of LaNi3.95Al0.75Co0.3 Alloy with Different Preparation Methods. Progress in Natural Science-Materials International, 32, 206-214. https://doi.org/10.1016/j.pnsc.2022.02.001
|
[42]
|
Gan, H.H., Yang, Y.F. and Shao, H.X. (2015) High Rate Performance of MINi4.07Co0.45Mn0.38Al0.31 Hydrogen Storage Alloy. Battery Bimonthly, 45, 194.
|
[43]
|
Hubkowska, K., Soszko, M., Krajewski, M. and Czerwiński, A. (2019) Enhanced Kinetics of Hydrogen Electrosorption in AB5 Hydrogen Storage Alloy Decorated with Pd Nanoparticles. Electrochemistry Communications, 100, 100-103. https://doi.org/10.1016/j.elecom.2019.02.007
|
[44]
|
Zhu, S., Chen, X., Liu, J., Yang, N., Chen, J., Gu, C., et al. (2020) Long-term Hydrogen Absorption/desorption Properties of an AB5-Type LaNi4.75Mn0.25 Alloy. Materials Science and Engineering: B, 262, Article ID: 114777. https://doi.org/10.1016/j.mseb.2020.114777
|
[45]
|
Nowak, M., Balcerzak, M. and Jurczyk, M. (2018) Hydrogen Storage and Electrochemical Properties of Mechanically Alloyed La1.5-xGdxMg0.5Ni7 (0 ≤ x ≤ 1.5). International Journal of Hydrogen Energy, 43, 8897-8906. https://doi.org/10.1016/j.ijhydene.2018.03.130
|
[46]
|
Ma, Y.R., Dong, X.P., Chen, Y.F., Ran, T., Li, Z.Y., Li, H.D. and Su, D.D. (2020) Capacity Attenuation and Microstructure of La-Mg-Ni Hydrogen Storage Alloys. Engineering Science and Technology, 20, Article ID: 10214.
|
[47]
|
Chen, Y., Mo, X., Huang, Y., Hu, C., Zuo, X., Wei, Q., et al. (2022) The Role of Magnesium on Properties of La3-XMgxNi9 (x = 0, 0.5, 1.0, 1.5, 2.0) Hydrogen Storage Alloys from First-Principles Calculations. International Journal of Hydrogen Energy, 47, 36408-36417. https://doi.org/10.1016/j.ijhydene.2022.08.242
|
[48]
|
Wang, B., Wang, Y., Xue, T., Zou, Z. and Liu, Z. (2021) The Morphology and Electrochemical Properties of La1-xMgxNi3.4Al0.1 (x = 0.1 – 0.4) Hydrogen Storage Alloys. International Journal of Hydrogen Energy, 46, 35653-35661. https://doi.org/10.1016/j.ijhydene.2021.08.114
|
[49]
|
Dong, Z.W., Zhang, S.Y., Ma, R.B., Wu, X.W. and Gao, Y.H. (2018) Preparation and Electrochemical Hydrogenation Properties of La1-xMgxNi2.5Co0.5 (x = 0~0.4) Hydrogen Storage Alloys. Journal of Material Sciences & Engineering, 36, 573.
|
[50]
|
Zhou, N., Du, W., Zhang, P., Zhu, Y., Wang, Z., Liu, K., et al. (2016) Microstructure and Electrochemical Properties of La0.8–x MMXMg0.2Ni3.1Co0.3Al0.1 (x = 0, 0.1, 0.2, 0.3) Alloys. Rare Metals, 36, 645-650. https://doi.org/10.1007/s12598-016-0716-5
|
[51]
|
Xu, J.F., Zhang, G.F., Hu, F., Wang, R.F., Dou, Y. and Zhang, Y. (2020) Phase Structure and Electro-Chemical Performance for Super Lattice La-Mg-Ni Based A5B19 Type Negative Materials. Journal of Materials and Engineering, 48, 46.
|
[52]
|
Huang, X.T., Lu, Z., Qing, P.L. and Tan, C.S. (2016) Study on the Hydrogen Properties and Electro-Chemical Performance of La0.7-xPrxZr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(x = 0, 0.05, 0.10, 0.15, 0.20) Alloys. Materials Reports, 30, 33.
|
[53]
|
Liu, J., Chen, X., Xu, J., Zhu, S., Cheng, H., Yang, G., et al. (2021) A New Strategy for Enhancing the Cycling Stability of Superlattice Hydrogen Storage Alloys. Chemical Engineering Journal, 418, Article ID: 129395. https://doi.org/10.1016/j.cej.2021.129395
|
[54]
|
Li, Y.M., Liu, Z.C., Zhang, Y.H. and Ren, H.P. (2019) The Effect of Zn Substitution on the Phase Structure of AB3 La-Mg-Ni Alloy Influence of Electrochemical Properties and Failure Behavior. Chinese. The Chinese Journal of Nonferrous Metals, 29, 1028.
|
[55]
|
Wang, W., Xu, G., Zhang, L., Ma, C., Zhao, Y., Zhang, H., et al. (2021) Electrochemical Features of Ce2Ni7-Type La0.65Nd0.15Mg0.25Ni3.20M0.10 (M = Ni, Mn and Al) Hydrogen Storage Alloys for Rechargeable Nickel Metal Hydride Battery. Journal of Alloys and Compounds, 861, Article ID: 158469. https://doi.org/10.1016/j.jallcom.2020.158469
|
[56]
|
Fan, Y., Zhang, L., Xue, C., Fan, G., Liu, J., Liu, B., et al. (2019) Superior Electrochemical Performances of La-Mg-Ni Alloys with A2B7/A5B19 Double Phase. International Journal of Hydrogen Energy, 44, 7402-7413. https://doi.org/10.1016/j.ijhydene.2019.01.188
|
[57]
|
Zhang, Y., Gong, P., Li, L., Sun, H., Feng, D. and Guo, S. (2017) Hydrogen Storage Thermodynamics and Dynamics of La-Mg-Ni-Based LaMg12-Type Alloys Synthesized by Mechanical Milling. Rare Metals, 38, 1144-1152. https://doi.org/10.1007/s12598-016-0842-0
|
[58]
|
Zhang, H., Fu, L., Xuan, W. and Qi, J. (2020) Surface Modification of the La1.7Mg1.3Ni9 Alloy with Trace Y2O3 Related to the Electrochemical Hydrogen Storage Properties. Renewable Energy, 145, 1572-1577. https://doi.org/10.1016/j.renene.2019.07.080
|
[59]
|
Luo, L.R., Cai, Y. and Hu, F. (2019) Electrochemical and Kinetic Properties of As-Cast and Quenched CeMg11Ni Hydrogen Storage Alloys. Energy Storage Science and Technology, 8, 904-910.
|
[60]
|
Li, Y., An, X., Liu, Z., Zhang, Y. and Ren, H. (2019) Microstructural Heredity of the La Mg Ni Based Electrode Alloys during Annealing. International Journal of Hydrogen Energy, 44, 29344-29355. https://doi.org/10.1016/j.ijhydene.2019.01.179
|
[61]
|
Chen, Y.F., Dong, X.P., Ma, Y.R., Li, X., Gao, T.Y. and Su, J.W. (2020) Effect of Annealing Time on Structure and Gaseous Hydrogen Absorption and Desorption Properties of LaMgNi3.9Mn0.2 Alloy. Rare Hard Metals, 48, 904.
|
[62]
|
Deng, A.Q., Luo, Y.C., Wang, H., Zhao, L. and Luo, Y.W. (2018) Effect of Annealing Treatment on the Phase Structure and Electrochemical Properties of La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1A2B7-Type Hydrogen Storage Alloys. Materials Reports, 32, 2565.
|
[63]
|
Jiao, Q.T., Pan, W., Zhu, S., Chen, X.Y., Yang, N., Chen, J., Gu, C.N., Qiu, T. and Liu, J.J. (2021) Effects of Phase Composition on Electrochemical Properties of La0.75Mg0.25Ni3.5 Hydrogen Storage Alloy. Materials Reports, 35, 6140.
|
[64]
|
Young, K., Ouchi, T. and Huang, B. (2014) Effects of Various Annealing Conditions on (Nd, Mg, Zr) (Ni, Al, Co)3.74 Metal Hydride Alloys. Journal of Power Sources, 248, 147-153. https://doi.org/10.1016/j.jpowsour.2013.09.037
|
[65]
|
He, X., Xiong, W., Wang, L., Li, B., Li, J., Zhou, S., et al. (2022) Study on the Evolution of Phase and Properties for Ternary La-Y-Ni-Based Hydrogen Storage Alloys with Different Stoichiometric Ratios. Journal of Alloys and Compounds, 921, Article ID: 166064. https://doi.org/10.1016/j.jallcom.2022.166064
|
[66]
|
Yan, H., Xiong, W., Wang, L., Li, B., Li, J. and Zhao, X. (2017) Investigations on AB3-, A2B7-and A5B19-Type La Y Ni System Hydrogen Storage Alloys. International Journal of Hydrogen Energy, 42, 2257-2264. https://doi.org/10.1016/j.ijhydene.2016.09.049
|
[67]
|
Zhao, L., Luo, Y.C., Deng, A.Q. and Jiang, W.T. (2018) Mg-Free Superlattice Structure A2B7La1-xYxNi3.25Mn0.15Al0.1 Hydrogen Storage and Electrochemical Properties of Alloys. Chemical Journal of Chinese Universities, 39, 1993.
|
[68]
|
Liu, Y., Yuan, H., Guo, M. and Jiang, L. (2019) Effect of Y Element on Cyclic Stability of A2B7-Type La-Y-Ni-Based Hydrogen Storage Alloy. International Journal of Hydrogen Energy, 44, 22064-22073. https://doi.org/10.1016/j.ijhydene.2019.06.081
|
[69]
|
Guo, Y., Shi, Y., Yuan, R., Leng, H. and Li, Q. (2021) Inhibition Mechanism of Capacity Degradation in Mg-Substituted LaY2-xMgxNi9 Hydrogen Storage Alloys. Journal of Alloys and Compounds, 873, Article ID: 159826. https://doi.org/10.1016/j.jallcom.2021.159826
|
[70]
|
Zhao, L.Q., Deng, A.Q., Yang, Y., Kang, X.Y. and Luo, Y.C. (2022) Study on Phase Structure, Hydrogen Storage and Electrochemical Properties of La-Nd-Y-Ni A5B19 Annealed Alloy. Journal of the Chinese Society of Rare Earths, 40, 250.
|
[71]
|
Guo, M., Yuan, H., Liu, Y. and Jiang, L. (2021) Effect of SM on the Cyclic Stability of La-Y-Ni-Based Alloys and Their Comparison with Re-Mg-Ni-Based Hydrogen Storage Alloy. International Journal of Hydrogen Energy, 46, 7432-7441. https://doi.org/10.1016/j.ijhydene.2020.11.195
|
[72]
|
Yang, Y., Luo, Y.C., Mei, X.Z., Wang, H. and Deng, A.Q. (2017) Microstructure and Electrochemical Properties of A2B7 La0.63(Pr, Nd, Y, Sm, Gd)0.2Mg0.17Ni3.1Co0.3Al0.1 Hydrogen Storage Alloy. Journal of Functional Materials, 48, 8135-8141.
|
[73]
|
Wang, L., Zhang, X., Zhou, S., Xu, J., Yan, H., Luo, Q., et al. (2020) Effect of Al Content on the Structural and Electrochemical Properties of A2B7 Type La-Y-Ni Based Hydrogen Storage Alloy. International Journal of Hydrogen Energy, 45, 16677-16689. https://doi.org/10.1016/j.ijhydene.2020.04.136
|
[74]
|
Xiong, W., Yan, H., Wang, L., Verbetsky, V., Zhao, X., Mitrokhin, S., et al. (2017) Characteristics of A2B7-Type La Y Ni-Based Hydrogen Storage Alloys Modified by Partially Substituting Ni with Mn. International Journal of Hydrogen Energy, 42, 10131-10141. https://doi.org/10.1016/j.ijhydene.2017.01.080
|
[75]
|
Zhou, S.J., Zhang, X., Xu, J., Zhao, Y.Y. and Yan, H.Z. (2022) Study on Element Regulation and Low Temperature Characteristics of a New La-Y-Ni Hydrogen Storage Alloy. Journal of the Chinese Society of Rare Earths, 40, 805.
|
[76]
|
Wang, H., Luo, Y.C., Deng, A.Q., Zhao, L. and Jiang, W.T. (2018) Effect of Annealing Temperature on Phase Structure and Electrochemical Properties of La-Y-Ni A2B7 Alloy without Mg. Journal of Inorganic Materials, 33, 434.
|
[77]
|
Li, J.P., Deng, A.Q., Yang, Y., Pan, F.J., Zhang, H.M. and Luo, Y.C. (2022) Phase Structure and Electro-Chemical Properties of La-Y-Ni A5B19 Annealed Alloy. The Chinese Journal of Nonferrous Metals, 32, 788.
|
[78]
|
Guo, M., Yuan, H.P., Liu, Y.R. and Jiang, L.J. (2019) Effect of Heat Treatment Temperature on Phase Structure and Electrochemical Properties of La-Y-Ni Alloy. Chinese Journal of Inorganic Chemistry, 35, 1041.
|
[79]
|
Li, T., Luo, X.Y. and Chen, Z.R. (2022) Effect of Annealing Temperature on Electrochemical Properties of Hydrogen Storage Alloys for Automobile Nickel Metal Hydride Batteries. Chinese Rare Earths, 43, 93.
|
[80]
|
Zhou, S., Wang, L., Xiong, W., Li, B., Li, J., Zhang, X., et al. (2022) High Temperature Phase Transformation and Low Temperature Electrochemical Properties of La1.9Y4.1Ni20.8Mn0.2Al H2-Storage Alloy. International Journal of Hydrogen Energy, 47, 2547-2560. https://doi.org/10.1016/j.ijhydene.2021.10.188
|
[81]
|
Zhao, S., Wang, H., Hu, R., Jiang, W., Liu, J., Ouyang, L., et al. (2021) Phase Transformation and Hydrogen Storage Properties of Lay2Ni10.5 Superlattice Alloy with Single Gd2Co7-Type or Ce2Ni7-Type Structure. Journal of Alloys and Compounds, 868, Article ID: 159254. https://doi.org/10.1016/j.jallcom.2021.159254
|
[82]
|
Zhao, S., Yang, L., Liu, J., Ouyang, L., Zhu, M. and Wang, H. (2022) Structural Evolution and Electrochemical Hydrogen Storage Properties of Single-Phase A5B19-Type (La0.33Y0.67)5Ni17.6Mn0.9Al0.5 Alloy. Journal of Power Sources, 548, Article ID: 232039. https://doi.org/10.1016/j.jpowsour.2022.232039
|
[83]
|
Xing, L., Li, Y.M., Zhang, Y.H., Ren, H.P. and Jin, Z.L. (2017) Electrochemical Hydrogen Storage Properties and Failure Behavior of Fast Quenched and Annealed La4MgNi19 Alloy. Chinese Journal of Rare Metals, 41, 1318.
|
[84]
|
Wu, R., Yuan, H., Liu, Y., Hou, Z., Li, Z., Wang, S., et al. (2022) Effect of Carbon Coating on Electrochemical Properties of AB3.5-Type La-Y-Ni-Based Hydrogen Storage Alloys. Journal of Rare Earths, 40, 1264-1271. https://doi.org/10.1016/j.jre.2021.06.005
|
[85]
|
Ali, N.A. and Ismail, M. (2021) Advanced Hydrogen Storage of the Mg-Na-Al System: A Review. Journal of Magnesium and Alloys, 9, 1111-1122. https://doi.org/10.1016/j.jma.2021.03.031
|
[86]
|
Wei, Z., Feng, D.C., Zhai, T.T., Yuan, Z.M. and Zhang, Y.H. (2021) Electrochemical Performance of La2-xSmxMg16Ni (x = 0.1-0.4) + 100%Ni + 5%Graphene Composite Hydrogen Storage Alloys. Metallic Functional Materials, 29, 33-39.
|
[87]
|
Li, B., Li, J., Zhao, H., Yu, X. and Shao, H. (2019) Mg-Based Metastable Nano Alloys for Hydrogen Storage. International Journal of Hydrogen Energy, 44, 6007-6018. https://doi.org/10.1016/j.ijhydene.2019.01.127
|
[88]
|
Li, Y., Yang, J., Luo, L., Hu, F., Zhai, T., Zhao, Z., et al. (2019) Microstructure Characteristics, Hydrogen Storage Kinetic and Thermodynamic Properties of Mg80-NiY (x = 0 – 7) Alloys. International Journal of Hydrogen Energy, 44, 7371-7380. https://doi.org/10.1016/j.ijhydene.2019.01.216
|
[89]
|
Zhang, W., Zhao, D., Zhang, Y., Li, J., Guo, S., Qi, Y., et al. (2022) Effect of Y Partially Substituting La on the Phase Structure and Hydrogen Storage Property of La-Mg-Ni Alloys. Journal of Physics and Chemistry of Solids, 167, Article ID: 110744. https://doi.org/10.1016/j.jpcs.2022.110744
|
[90]
|
Gao, J.L., Shang, H.W., Li, Y.Q., Yuan, Z.M., Zhao, D.L. and Zhang, Y.H. (2017) Gaseous Hydrogen Storage Kinetics of La-Mg-Ni-Cu Series Mg2Ni Alloy. The Chinese Journal of Nonferrous Metals, 27, 1132.
|
[91]
|
Kang, H., Yong, H., Wang, J., Xu, S., Li, L., Wang, S., et al. (2021) Characterization on the Kinetics and Thermodynamics of Mg-Based Hydrogen Storage Alloy by the Multiple Alloying of Ce, Ni and Y Elements. Materials Characterization, 182, Article ID: 111583. https://doi.org/10.1016/j.matchar.2021.111583
|
[92]
|
Yong, H., Guo, S., Yuan, Z., Qi, Y., Zhao, D. and Zhang, Y. (2020) Catalytic Effect of in Situ Formed Mg2Ni and REH (RE: Ce and Y) on Thermodynamics and Kinetics of Mg-Re-Ni Hydrogen Storage Alloy. Renewable Energy, 157, 828-839. https://doi.org/10.1016/j.renene.2020.05.043
|
[93]
|
Sun, H., Zhao, F.G., Feng, X.C., Ren, H.P. and Zhang, Y.H. (2020) Activation and Hydrogen Absorption Properties of Mg22Y2Ni10Cu2 Hydrogen Storage Alloy. Chinese Journal of Rare Metals, 44, 387.
|
[94]
|
Zhang, Y., Sun, H., Zhang, W., Wei, X., Yuan, Z., Gao, J., et al. (2021) A Comparison Study of Hydrogen Storage Performances of As-Cast La10-Re Mg80Ni10 (x = 0 or 3; RE = Sm or Ce) Alloys. Journal of Alloys and Compounds, 884, Article ID: 160905. https://doi.org/10.1016/j.jallcom.2021.160905
|
[95]
|
Zhong, H., Xu, J., Jiang, C. and Lu, X. (2018) Microstructure and Remarkably Improved Hydrogen Storage Properties of Mg2Ni Alloys Doped with Metal Elements of Al, Mn and Ti. Transactions of Nonferrous Metals Society of China, 28, 2470-2477. https://doi.org/10.1016/s1003-6326(18)64893-9
|
[96]
|
Chen, L., Hu, C. and Liu, F. (2019) Microstructure and Hydrogen Storage Kinetics of Mg89Re11 (RE = Pr, Nd, Sm) Binary Alloys. RSC Advances, 9, 4445-4452. https://doi.org/10.1039/c8ra08983c
|
[97]
|
Cao, W., Ding, X., Zhang, Y., Zhang, J., Chen, R., Su, Y., et al. (2022) Formation of AlNi Phase and Its Influence on Hydrogen Absorption Kinetics of Mg77ni23-Al Alloys at Intermediate Temperatures. International Journal of Hydrogen Energy, 47, 25733-25744. https://doi.org/10.1016/j.ijhydene.2022.06.022
|
[98]
|
Yong, H., Wei, X., Wang, Y., Guo, S., Yuan, Z., Qi, Y., et al. (2020) Phase Evolution, Thermodynamics and Kinetics Property of Transition Metal (TM = Zr, Ti, V) Catalyzed Mg-Ce-Y-Ni Hydrogen Storage Alloys. Journal of Physics and Chemistry of Solids, 144, Article ID: 109516. https://doi.org/10.1016/j.jpcs.2020.109516
|
[99]
|
Chen, Y., Zhang, H., Wu, F., Sun, Z., Zheng, J., Zhang, L., et al. (2021) Mn Nanoparticles Enhanced Dehydrogenation and Hydrogenation Kinetics of MgH2 for Hydrogen Storage. Transactions of Nonferrous Metals Society of China, 31, 3469-3477. https://doi.org/10.1016/s1003-6326(21)65743-6
|
[100]
|
Zhang, J., Liu, H., Sun, P., Zhou, C., Guo, X. and Fang, Z.Z. (2023) The Role of Oxide in Hydrogen Absorption and Desorption Kinetics of MgH2-Based Material. Journal of Alloys and Compounds, 934, Article ID: 167757. https://doi.org/10.1016/j.jallcom.2022.167757
|
[101]
|
Tian, G., Wu, F., Zhang, H., Wei, J., Zhao, H. and Zhang, L. (2023) Boosting the Hydrogen Storage Performance of MgH2 by Vanadium Based Complex Oxides. Journal of Physics and Chemistry of Solids, 174, Article ID: 111187. https://doi.org/10.1016/j.jpcs.2022.111187
|
[102]
|
Wang, X., Xiao, X., Liang, Z., Zhang, S., Qi, J., Lv, L., et al. (2022) Ultrahigh Reversible Hydrogen Capacity and Synergetic Mechanism of 2LiBH4-MgH2 System Catalyzed by Dual-Metal Fluoride. Chemical Engineering Journal, 433, Article ID: 134482. https://doi.org/10.1016/j.cej.2021.134482
|
[103]
|
Yong, H., Guo, S., Yuan, Z., Zhang, W., Qi, Y., Zhao, D., et al. (2020) Phase Evolution, Hydrogen Storage Thermodynamics and Kinetics of Ternary Mg90Ce5Sm5 Alloy. Journal of Rare Earths, 38, 633-641. https://doi.org/10.1016/j.jre.2019.05.012
|
[104]
|
Jiang, M., Xu, J., Munroe, P. and Xie, Z. (2023) First-Principles Study on the Hydrogen Storage Properties of Mgh2(101) Surface by CuNi Co-Doping. Chemical Physics, 565, Article ID: 111760. https://doi.org/10.1016/j.chemphys.2022.111760
|
[105]
|
Shang, Y., Jin, O., Puszkiel, J.A., Karimi, F., Dansirima, P., Sittiwet, C., et al. (2022) Effects of Metal-Based Additives on Dehydrogenation Process of 2NaBH4 + MgH2 System. International Journal of Hydrogen Energy, 47, 37882-37894. https://doi.org/10.1016/j.ijhydene.2022.08.293
|
[106]
|
Liu, Z., Liu, J., Wu, Z., Tang, Q., Zhu, Y., Zhang, J., et al. (2022) Enhanced Hydrogen Sorption Kinetics of MgH2 Catalyzed by a Novel Layered Ni/Al2O3 Hybrid. Journal of Alloys and Compounds, 895, Article ID: 162682. https://doi.org/10.1016/j.jallcom.2021.162682
|
[107]
|
Hou, Q., Zhang, J., Guo, X.T., Xu, G. and Yang, X. (2022) Synthesis of Low-Cost Biomass Charcoal-Based Ni Nanocatalyst and Evaluation of Their Kinetic Enhancement of MgH2. International Journal of Hydrogen Energy, 47, 15209-15223. https://doi.org/10.1016/j.ijhydene.2022.03.040
|
[108]
|
Tome, K.C., Xi, S., Fu, Y., Lu, C., Lu, N., Guan, M., et al. (2022) Remarkable Catalytic Effect of Ni and ZrO2 Nanoparticles on the Hydrogen Sorption Properties of MgH2. International Journal of Hydrogen Energy, 47, 4716-4724. https://doi.org/10.1016/j.ijhydene.2021.11.102
|
[109]
|
Yu, Z., Zhang, W., Zhang, Y., Fu, Y., Cheng, Y., Guo, S., et al. (2022) Remarkable Kinetics of Novel Ni@CeO2-MgH2 Hydrogen Storage Composite. International Journal of Hydrogen Energy, 47, 35352-35364. https://doi.org/10.1016/j.ijhydene.2022.08.121
|
[110]
|
Ren, S., Fu, Y., Zhang, L., Cong, L., Xie, Y., Yu, H., et al. (2022) An Improved Hydrogen Storage Performance of MgH2 Enabled by Core-Shell Structure Ni/Fe3O4@mil. Journal of Alloys and Compounds, 892, Article ID: 162048. https://doi.org/10.1016/j.jallcom.2021.162048
|
[111]
|
Song, Y.B. and Zhao, X. (2020) Preparation and properties of Mg2Ni-Based Hydrogen Storage Al-oy for New Energy Vehicle. Chinese Journal of Power Sources, 44, 186.
|
[112]
|
Meena, P., Meena, A., Jangir, M., Sharma, V.K. and Jain, I.P. (2019) Mg-Based Nanocomposites for Hydrogen Storage Containing La23Nd8.5Ti1.1Ni33.9Co32.9Al0.65 Alloys as Additives. Materials Today: Proceedings, 18, 901-911. https://doi.org/10.1016/j.matpr.2019.06.523
|
[113]
|
Zaluski, L., Zaluska, A. and Ström-Olsen, J.O. (1995) Hydrogen Absorption in Nanocrystalline Mg2Ni Formed by Mechanical Alloying. Journal of Alloys and Compounds, 217, 245-249. https://doi.org/10.1016/0925-8388(94)01348-9
|
[114]
|
Zhang, J., Liu, H., Sun, P., Guo, X., Zhou, C. and Fang, Z.Z. (2022) The Effects of Crystalline Defects on Hydrogen Absorption Kinetics of Catalyzed MgH2 at Ambient Conditions. Journal of Alloys and Compounds, 927, Article ID: 167090. https://doi.org/10.1016/j.jallcom.2022.167090
|
[115]
|
Wen, J., de Rango, P., Allain, N., Laversenne, L. and Grosdidier, T. (2020) Improving Hydrogen Storage Performance of Mg-Based Alloy through Microstructure Optimization. Journal of Power Sources, 480, Article ID: 228823. https://doi.org/10.1016/j.jpowsour.2020.228823
|
[116]
|
Chen, J.N., Zhang, J., He, J.H., Zhou, X.J., Lu, X.Z., Chen, X.M., et al. (2022) A Comparative Study on Hydrogen Storage Properties of As-Cast and Extruded Mg-4.7Y-4.1Nd-0.5Zr Alloys. Journal of Physics and Chemistry of Solids, 161, Article ID: 110483. https://doi.org/10.1016/j.jpcs.2021.110483
|
[117]
|
Hu, Z.L. (2002) Hydrogen Storage Material. Chemical Industry Press.
|
[118]
|
Solonin, Y.M., Galiy, O.Z., Karpets, M.V., Savenko, O.F., Shcherbakova, L.G., Schur, D.V., et al. (2022) Electrochemical Properties of the ZrNiMnCrV Alloy Depending on Quantitative Phase Composition. Powder Metallurgy and Metal Ceramics, 61, 370-376. https://doi.org/10.1007/s11106-022-00323-8
|
[119]
|
Yartys, V.A. and Lototskyy, M.V. (2022) Laves Type Intermetallic Compounds as Hydrogen Storage Materials: A Review. Journal of Alloys and Compounds, 916, Article ID: 165219. https://doi.org/10.1016/j.jallcom.2022.165219
|
[120]
|
Matsuyama, A., Mizutani, H., Kozuka, T. and Inoue, H. (2017) Effect of Ti Substitution on Electrochemical Properties of ZrNi Alloy Electrode for Use in Nickel-Metal Hydride Batteries. International Journal of Hydrogen Energy, 42, 22622-22627. https://doi.org/10.1016/j.ijhydene.2017.03.119
|
[121]
|
Wan, C., Denys, R.V. and Yartys, V.A. (2021) Effects of Ti Substitution for Zr on the Electrochemical Characteristics and Structure of AB2-Type Laves-Phase Alloys as Metal Hydride Anodes. Journal of Alloys and Compounds, 889, Article ID: 161655. https://doi.org/10.1016/j.jallcom.2021.161655
|
[122]
|
Wan, C., Denys, R.V., Lelis, M., Milčius, D. and Yartys, V.A. (2019) Electrochemical Studies and Phase-Structural Characterization of a High-Capacity La-Doped AB2 Laves Type Alloy and Its Hydride. Journal of Power Sources, 418, 193-201. https://doi.org/10.1016/j.jpowsour.2019.02.044
|
[123]
|
Leng, H., Yan, P., Han, X., Liu, W., Liu, Q. and Li, Q. (2020) Microstructural Characterization and Hydrogenation Performance of ZrxV5Fe (x = 3-9) Alloys. Progress in Natural Science: Materials International, 30, 229-238. https://doi.org/10.1016/j.pnsc.2020.01.002
|
[124]
|
Yao, Z., Xiao, X., Liang, Z., Huang, X., Kou, H., Luo, W., et al. (2019) Study on the Modification of Zr-Mn-V Based Alloys for Hydrogen Isotopes Storage and Delivery. Journal of Alloys and Compounds, 797, 185-193. https://doi.org/10.1016/j.jallcom.2019.05.076
|
[125]
|
Wu, Y., Peng, Y., Jiang, X., Zeng, H., Wang, Z., Zheng, J., et al. (2021) Reversible Hydrogenation of Ab2-Type Zr-Mg-Ni-V Based Hydrogen Storage Alloys. Progress in Natural Science: Materials International, 31, 319-323. https://doi.org/10.1016/j.pnsc.2021.01.008
|
[126]
|
Erika, T., Joaquin, D., Ricardo, F., Fabricio, R., Fernando, Z. and Verónica, D. (2018) Molybdenum Incorporation on AB2 Alloys-Part I Metallurgical and Electrochemical Characterization: Electrocatalytic Behavior. Journal of Alloys and Compounds, 744, 583.
|
[127]
|
Luo, L., Ye, X., Zhao, C., Zhang, G., Kou, H., Xiong, R., et al. (2020) Effects of Mo Substitution on the Kinetic and Thermodynamic Characteristics of ZrCo1-xMox (x = 0-0.2) Alloys for Hydrogen Storage. International Journal of Hydrogen Energy, 45, 2989-2998. https://doi.org/10.1016/j.ijhydene.2019.11.126
|
[128]
|
Wu, T., Xue, X., Zhang, T., Hu, R., Kou, H. and Li, J. (2016) Role of Ni Addition on Hydrogen Storage Characteristics of ZrV2 Laves Phase Compounds. International Journal of Hydrogen Energy, 41, 10391-10404. https://doi.org/10.1016/j.ijhydene.2014.10.023
|
[129]
|
Tu, Y.L., Jiang, L.J., Guo, X.M., Jian, L., Zhao, W. and Wu, Y.F. (2014) Hydrogen Storage Properties of ZrFe1.95-xMnxV0.10 (x = 0, 0.05, 0.10, 0.15) Alloys. Chinese Journal of Rare Metals, 38, 629.
|
[130]
|
Ai, Y.C., Su, T., Huang, S.M., Xu, K. and Hou, X.L. (2022) Study on Zr-V-Fe-Cr Hydrogen Source for Lightweight Hydrogen Atomic Clock. Astronomical Research & Technology, 19, 379.
|
[131]
|
Qin, C., Wang, H., Jiang, W., Liu, J., Ouyang, L. and Zhu, M. (2022) Comparative Study of Ga and Al Alloying with ZrFe2 for High-Pressure Hydrogen Storage. International Journal of Hydrogen Energy, 47, 13409-13417. https://doi.org/10.1016/j.ijhydene.2021.12.110
|
[132]
|
Yao, Z., Liang, Z., Xiao, X., Huang, X., Liu, J., Wang, X., et al. (2020) An Impact of Hydrogenation Phase Transformation Mechanism on the Cyclic Stabilizing Behavior of Zr0.8Ti0.2Co Alloy for Hydrogen Isotope Handling. Materials Today Energy, 18, Article ID: 100554. https://doi.org/10.1016/j.mtener.2020.100554
|
[133]
|
Yao, Z., Liang, Z., Xiao, X., Qi, J., He, J., Huang, X., et al. (2022) Achieving Excellent Cycle Stability in Zr-Nb-Co-Ni Based Hydrogen Isotope Storage Alloys by Controllable Phase Transformation Reaction. Renewable Energy, 187, 500-507. https://doi.org/10.1016/j.renene.2022.01.086
|
[134]
|
Yu, Y.F., Ye, Y.M., Li, X.B., Kang, Y. and Hu, S.L. (2018) Study on Phase Structure and Hydrogen Absorption/Desorption Performance of ZrVFe Alloy. Rare Metals and Cemented Carbides, 46, 49-53, 62.
|
[135]
|
Wan, C., Jiang, X., Yin, X. and Ju, X. (2020) High-Capacity Zr-Based AB2-Type Alloys as Metal Hydride Battery Anodes. Journal of Alloys and Compounds, 828, Article ID: 154402. https://doi.org/10.1016/j.jallcom.2020.154402
|
[136]
|
Lee, S., Kim, D., Yu, J., Jang, K. and Lee, J. (1998) The Effect of Annealing on the Discharge Characteristics of a Zr-V-Mn-Ni Hydrogen Storage Alloy. Journal of The Electrochemical Society, 145, 1953-1957. https://doi.org/10.1149/1.1838581
|
[137]
|
Zhang, Y., Li, J., Zhang, T., Wu, T., Kou, H. and Xue, X. (2017) Hydrogenation Thermokinetics and Activation Behavior of Non-Stoichiometric Zr-Based Laves Alloys with Enhanced Hydrogen Storage Capacity. Journal of Alloys and Compounds, 694, 300-308. https://doi.org/10.1016/j.jallcom.2016.10.021
|
[138]
|
Luo, Z., Leng, H., Han, X., Liu, W., Yang, G. and Ma, Z. (2022) Influence of Preparation Methods on the Hydrogen Absorption Properties of Zr7V5Fe Getter Alloy. Journal of Alloys and Compounds, 926, Article ID: 166739. https://doi.org/10.1016/j.jallcom.2022.166739
|
[139]
|
Wijayanti, I.D., Mølmen, L., Denys, R.V., Nei, J., Gorsse, S., Guzik, M.N., et al. (2019) Studies of Zr-Based C15 Type Metal Hydride Battery Anode Alloys Prepared by Rapid Solidification. Journal of Alloys and Compounds, 804, 527-537. https://doi.org/10.1016/j.jallcom.2019.06.324
|
[140]
|
Zhang, T., Zhang, Y., Zhang, M., Hu, R., Kou, H., Li, J., et al. (2016) Hydrogen Absorption Behavior of Zr-Based Getter Materials with Pd Ag Coating against Gaseous Impurities. International Journal of Hydrogen Energy, 41, 14778-14787. https://doi.org/10.1016/j.ijhydene.2016.06.073
|
[141]
|
Han, X., Yan, P., Zhang, D., Lv, L., Yang, G., Qin, L., et al. (2020) Hydrogen Absorption Behavior of Non-Stoichiometric Zr7-xTixV5Fe (x = 0, 0.3, 0.9, 1.5 and 2.1) Alloys. International Journal of Hydrogen Energy, 45, 21625-21634. https://doi.org/10.1016/j.ijhydene.2020.05.194
|
[142]
|
Cao, Z., Zhou, P., Xiao, X., Zhan, L., Jiang, Z., Wang, S., et al. (2022) Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-Based Laves Phase Alloys for Thermal Hydrogen Compression at Mild Operating Temperatures. Rare Metals, 41, 2588-2594. https://doi.org/10.1007/s12598-022-01962-x
|
[143]
|
Yan, Y., Li, Z., Wu, Y. and Zhou, S. (2022) Hydrogen Absorption-Desorption Characteristic of (Ti0.85Zr0.15)1.1Cr1-Xmoxmn Based Alloys with C14 Laves Phase. Progress in Natural Science: Materials International, 32, 143-149. https://doi.org/10.1016/j.pnsc.2022.03.001
|
[144]
|
Nygård, M.M., Sørby, M.H., Grimenes, A.A. and Hauback, B.C. (2020) The Influence of Fe on the Structure and Hydrogen Sorption Properties of Ti-V-Based Metal Hydrides. Energies, 13, Article 2874. https://doi.org/10.3390/en13112874
|
[145]
|
Pineda-Romero, N. and Zlotea, C. (2022) Uncovering the Effect of Al Addition on the Hydrogen Storage Properties of the Ternary TiVNb Alloy. Materials, 15, Article 7974. https://doi.org/10.3390/ma15227974
|
[146]
|
Zhou, P., Cao, Z., Xiao, X., Jiang, Z., Zhan, L., Li, Z., et al. (2022) Study on Low-Vanadium Ti-Zr-Mn-Cr-V Based Alloys for High-Density Hydrogen Storage. International Journal of Hydrogen Energy, 47, 1710-1722. https://doi.org/10.1016/j.ijhydene.2021.10.106
|
[147]
|
Tu, B., Wang, H., Wang, Y., Li, R., Ouyang, L. and Tang, R. (2022) Optimizing Ti-Zr-Cr-Mn-Ni-V Alloys for Hybrid Hydrogen Storage Tank of Fuel Cell Bicycle. International Journal of Hydrogen Energy, 47, 14952-14960. https://doi.org/10.1016/j.ijhydene.2022.03.018
|
[148]
|
Wijayanti, I.D., Denys, R., Suwarno, Volodin, A.A., Lototskyy, M.V., Guzik, M.N., et al. (2020) Hydrides of Laves Type Ti-Zr Alloys with Enhanced H Storage Capacity as Advanced Metal Hydride Battery Anodes. Journal of Alloys and Compounds, 828, Article ID: 154354. https://doi.org/10.1016/j.jallcom.2020.154354
|
[149]
|
Khajavi, S., Rajabi, M. and Huot, J. (2018) Crystal Structure of As-Cast and Heat-Treated Ti0.5Zr0.5(Mn1-xFex) Cr1, X=0, 0.2, 0.4. Journal of Alloys and Compounds, 767, 432-438. https://doi.org/10.1016/j.jallcom.2018.07.111
|
[150]
|
Stepanova, E., Pushilina, N., Syrtanov, M., Laptev, R. and Kashkarov, E. (2019) Hydrogen Effect on Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Parts Produced by Electron Beam Melting. International Journal of Hydrogen Energy, 44, 29380-29388. https://doi.org/10.1016/j.ijhydene.2019.03.156
|
[151]
|
Khajavi, S., Rajabi, M. and Huot, J. (2019) Effect of Cold Rolling and Ball Milling on First Hydrogenation of Ti0.5Zr0.5 (Mn1-XFex) Cr1, X = 0, 0.2, 0.4. Journal of Alloys and Compounds, 775, 912-920. https://doi.org/10.1016/j.jallcom.2018.10.179
|
[152]
|
Liu, H., Tan, L., Guo, Y., Chen, P., Gao, S., Su, Z., et al. (2019) Fabrication and Electrochemical Hydrogen Storage Performance of Ti49Zr26Ni25 Alloy Covered with Cd/Pd Core/Shell Particles. International Journal of Hydrogen Energy, 44, 24800-24809. https://doi.org/10.1016/j.ijhydene.2019.07.094
|
[153]
|
Sujan, G.K., Pan, Z., Li, H., Liang, D. and Alam, N. (2019) An Overview on TiFe Intermetallic for Solid-State Hydrogen Storage: Microstructure, Hydrogenation and Fabrication Processes. Critical Reviews in Solid State and Materials Sciences, 45, 410-427. https://doi.org/10.1080/10408436.2019.1652143
|
[154]
|
Lv, P. and Huot, J. (2016) Hydrogen Storage Properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 Alloys. International Journal of Hydrogen Energy, 41, 22128-22133. https://doi.org/10.1016/j.ijhydene.2016.07.091
|
[155]
|
Lin, J. (2018) Preparation and Electrochemical Hydrogen Storage Properties of TiVNi Composites. Jilin University, No. 12, 119.
|
[156]
|
Zhai, T., Wei, Z., Yuan, Z., Han, Z., Feng, D., Wang, H., et al. (2021) Influences of La Addition on the Hydrogen Storage Performances of TiFe-Base Alloy. Journal of Physics and Chemistry of Solids, 157, Article ID: 110176. https://doi.org/10.1016/j.jpcs.2021.110176
|
[157]
|
Liu, F.C., Han, Z.G., Yuan, Z.M., Zhai, T.T., Feng, D.C. and Zhang, Y.H. (2022) Effect of La Substitution for Ti on the Microstructure and Electrochemical Properties of TiFe Hydrogen Storage Alloys. Metallic Functional Materials, 29, 90.
|
[158]
|
Han, Z., Yuan, Z., Zhai, T., Feng, D., Sun, H. and Zhang, Y. (2023) Effect of Yttrium Content on Microstructure and Hydrogen Storage Properties of TiFe-Based Alloy. International Journal of Hydrogen Energy, 48, 676-695. https://doi.org/10.1016/j.ijhydene.2022.09.227
|
[159]
|
Zhang, Y., Shang, H., Gao, J., Zhang, W., Wei, X. and Yuan, Z. (2021) Effect of Sm Content on Activation Capability and Hydrogen Storage Performances of TiFe Alloy. International Journal of Hydrogen Energy, 46, 24517-24530. https://doi.org/10.1016/j.ijhydene.2021.05.017
|
[160]
|
Xu, Q.F., Zhai, T.T., Han, Z.G. and Zhang, Y.H. (2021) Effect of Pr Substitution of Ti on Microstructure and Electrochemical Properties of TiFe Based Hydrogen Storage Alloy. Metallic Functional Materials, 28, 42.
|
[161]
|
Shang, H., Zhang, Y., Li, Y., Gao, J., Zhang, W., Wei, X., et al. (2022) Effect of Pr Content on Activation Capability and Hydrogen Storage Performances of TiFe Alloy. Journal of Alloys and Compounds, 890, Article ID: 161785. https://doi.org/10.1016/j.jallcom.2021.161785
|
[162]
|
Lee, S., Ha, T., Lee, Y., Kim, D., Suh, J., Cho, Y.W., et al. (2021) EBSD Microstructural Analysis of AB-Type TiFe Hydrogen Storage Alloys. Materials Characterization, 178, Article ID: 111276. https://doi.org/10.1016/j.matchar.2021.111276
|
[163]
|
Li, Y., Shang, H., Zhang, Y., Li, P., Qi, Y. and Zhao, D. (2019) Investigations on Gaseous Hydrogen Storage Performances and Reactivation Ability of As-Cast TiFe1-Ni (x=0, 0.1, 0.2 and 0.4) Alloys. International Journal of Hydrogen Energy, 44, 4240-4252. https://doi.org/10.1016/j.ijhydene.2018.12.144
|
[164]
|
Dematteis, E.M., Dreistadt, D.M., Capurso, G., Jepsen, J., Cuevas, F. and Latroche, M. (2021) Fundamental Hydrogen Storage Properties of TiFe-Alloy with Partial Substitution of Fe by Ti and Mn. Journal of Alloys and Compounds, 874, Article ID: 159925. https://doi.org/10.1016/j.jallcom.2021.159925
|
[165]
|
Dematteis, E.M., Cuevas, F. and Latroche, M. (2021) Hydrogen Storage Properties of Mn and Cu for Fe Substitution in TiFe0.9 Intermetallic Compound. Journal of Alloys and Compounds, 851, Article ID: 156075. https://doi.org/10.1016/j.jallcom.2020.156075
|
[166]
|
Ali, W., Hao, Z., Li, Z., Chen, G., Wu, Z., Lu, X., et al. (2017) Effects of Cu and Y Substitution on Hydrogen Storage Performance of TiFe0.86Mn0.1Y0.1−xCux. International Journal of Hydrogen Energy, 42, 16620-16631. https://doi.org/10.1016/j.ijhydene.2017.04.247
|
[167]
|
Li, C., Gao, X., Liu, B., Wei, X., Zhang, W., Lan, Y., et al. (2023) Effects of Zr Doping on Activation Capability and Hydrogen Storage Performances of TiFe-Based Alloy. International Journal of Hydrogen Energy, 48, 2256-2270. https://doi.org/10.1016/j.ijhydene.2022.10.098
|
[168]
|
Faisal, M., Kim, J., Cho, Y.W., Jang, J., Suh, J., Shim, J., et al. (2021) Design of V-Substituted TiFe-Based Alloy for Target Pressure Range and Easy Activation. Materials, 14, Article 4829. https://doi.org/10.3390/ma14174829
|
[169]
|
Leng, H., Yu, Z., Luo, Q., Yin, J., Miao, N., Li, Q., et al. (2020) Effect of Cobalt on the Microstructure and Hydrogen Sorption Performances of TiFe0.8Mn0.2 Alloy. International Journal of Hydrogen Energy, 45, 19553-19560. https://doi.org/10.1016/j.ijhydene.2020.05.130
|
[170]
|
Shang, H., Zhang, Y., Li, Y., Qi, Y., Guo, S. and Zhao, D. (2019) Effects of Adding Over-Stoichiometrical Ti and Substituting Fe with Mn Partly on Structure and Hydrogen Storage Performances of TiFe Alloy. Renewable Energy, 135, 1481-1498. https://doi.org/10.1016/j.renene.2018.09.072
|
[171]
|
Liu, H., Zhang, J., Sun, P., Zhou, C., Liu, Y. and Fang, Z.Z. (2023) Effect of Oxygen Addition on Phase Composition and Activation Properties of TiFe Alloy. International Journal of Hydrogen Energy, 48, 8563-8572. https://doi.org/10.1016/j.ijhydene.2022.11.353
|
[172]
|
Alam, M.M., Sharma, P. and Huot, J. (2018) Effect of Addition of Lanthanum on the Hydrogen Storage Properties of TiFe Alloy. Acta Crystallographica Section A Foundations and Advances, 74, a146. https://doi.org/10.1107/s0108767318098537
|
[173]
|
Lv, P. and Huot, J. (2017) Hydrogenation Improvement of TiFe by Adding ZrMn2. Energy, 138, 375-382. https://doi.org/10.1016/j.energy.2017.07.072
|
[174]
|
Patel, A.K., Duguay, A., Tougas, B., Schade, C., Sharma, P. and Huot, J. (2020) Microstructure and First Hydrogenation Properties of TiFe Alloy with Zr and Mn as Additives. International Journal of Hydrogen Energy, 45, 787-797. https://doi.org/10.1016/j.ijhydene.2019.10.239
|
[175]
|
Patel, A., Duguay, A., Tougas, B., Neumann, B., Schade, C., Sharma, P., et al. (2021) Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives. Processes, 9, Article 1217. https://doi.org/10.3390/pr9071217
|
[176]
|
Shang, H., Zhang, Y., Gao, J., Zhang, W., Wei, X., Yuan, Z., et al. (2022) Characteristics of Electrochemical Hydrogen Storage Using Ti-Fe Based Alloys Prepared by Ball Milling. International Journal of Hydrogen Energy, 47, 1036-1047. https://doi.org/10.1016/j.ijhydene.2021.10.068
|
[177]
|
Li, Y., Zhang, Y., Shang, H., Gao, J., Zhang, W. and Ju, L. (2023) Hydrogen Storage Characteristics of Ti1.04Fe0.7Ni0.1Zr0.1Mn0.1Pr0.06 Alloy Treated by Ball Milling. Journal of Alloys and Compounds, 930, Article ID: 167024. https://doi.org/10.1016/j.jallcom.2022.167024
|
[178]
|
Yuan, Z., Sui, Y., Yuan, Q., Qi, Z., Zhai, T., Li, X., et al. (2023) Effects of Ball Milling Time on the Microstructure and Hydrogen Storage Performances of Ti21.7Y0.3Fe16Mn3Cr Alloy. International Journal of Hydrogen Energy, 48, 11340-11351. https://doi.org/10.1016/j.ijhydene.2022.09.027
|
[179]
|
Ha, T., Lee, S., Hong, J., Lee, Y., Kim, D., Suh, J., et al. (2021) Hydrogen Storage Behavior and Microstructural Feature of a TiFe-ZrCr2 Alloy. Journal of Alloys and Compounds, 853, Article ID: 157099. https://doi.org/10.1016/j.jallcom.2020.157099
|
[180]
|
Pei, P., Zhang, P.L., Zhang, B. and Song, X.P. (2006) V Based Hydrogen Storage Alloys and Alloying Research. Materials Reports, No. 10, 123.
|
[181]
|
Hang, Z.M., Bin, Z.G., Xu, H. and Wen, W.X. (2014) Microstructure and Electrochemical Properties of Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx (x = 0, 0.1, 0.2, 0.3) Alloys. Journal of Material Sciences & Engineering, 32, 52.
|
[182]
|
Chen, X.Y., Chen, R.R., Yu, K., Ding, X., Li, X.Z., Ding, H.S., et al. (2019) Effect of Ce Substitution on Hydrogen Absorption/Desorption of Laves Phase-Related BCC Solid Solution Ti33V37Mn30 Alloy. Journal of Alloys and Compounds, 783, 617-624. https://doi.org/10.1016/j.jallcom.2018.12.302
|
[183]
|
Xue, X., Ma, C., Liu, Y., Wang, H. and Chen, Q. (2023) Impacts of Ce Dopants on the Hydrogen Storage Performance of Ti-Cr-V Alloys. Journal of Alloys and Compounds, 934, Article ID: 167947. https://doi.org/10.1016/j.jallcom.2022.167947
|
[184]
|
Tong, Y.W., Li, N.L. and Zhang, X.F. (2021) Effect of Addition Amount of Rare Rarth Ce on Micro-Structure and Electrochemical Properties of V-Based Hydrogen Storage Alloys. Rare Metals and Cemented Carbides, 49, 42.
|
[185]
|
Kong, L., Li, X., Young, K., Nei, J., Liao, X. and Li, W. (2018) Effects of Rare-Earth Element Additions to Laves Phase-Related Body-Centered-Cubic Solid Solution Metal Hydride Alloys: Thermodynamic and Electrochemical Properties. Journal of Alloys and Compounds, 737, 174-183. https://doi.org/10.1016/j.jallcom.2017.12.058
|
[186]
|
Luo, L., Li, Y., Yuan, Z., Liu, S., Singh, A., Yang, F., et al. (2022) Nanoscale Microstructures and Novel Hydrogen Storage Performance of as Cast V47Fe11Ti30Cr10RE2 (RE = La, Ce, Y, Sc) Medium Entropy Alloys. Journal of Alloys and Compounds, 913, Article ID: 165273. https://doi.org/10.1016/j.jallcom.2022.165273
|
[187]
|
Luo, L., Li, Y., Zhai, T., Hu, F., Zhao, Z., Bian, X., et al. (2019) Microstructure and Hydrogen Storage Properties of V48Fe12Ti15-Cr25Al (x=0, 1) Alloys. International Journal of Hydrogen Energy, 44, 25188-25198. https://doi.org/10.1016/j.ijhydene.2019.02.172
|
[188]
|
Chanchetti, L.F., Hessel Silva, B., Montero, J., Zlotea, C., Champion, Y., Botta, W.J., et al. (2023) Structural Characterization and Hydrogen Storage Properties of the Ti31V26Nb26Zr12M5 (M = Fe, Co, or Ni) Multi-Phase Multicomponent Alloys. International Journal of Hydrogen Energy, 48, 2247-2255. https://doi.org/10.1016/j.ijhydene.2022.10.060
|
[189]
|
Hang, Z., Chen, L., Xiao, X., Yao, Z., Shi, L., Feng, Y., et al. (2021) Microstructure and Hydrogen Storage Properties of Ti10 + xV80 - xFe6Zr4 (x = 0~15) Alloys. International Journal of Hydrogen Energy, 46, 27622-27630. https://doi.org/10.1016/j.ijhydene.2021.06.019
|
[190]
|
Balcerzak, M., Wagstaffe, M., Robles, R., Pruneda, M. and Noei, H. (2020) Effect of Cr on the Hydrogen Storage and Electronic Properties of BCC Alloys: Experimental and First-Principles Study. International Journal of Hydrogen Energy, 45, 28996-29008. https://doi.org/10.1016/j.ijhydene.2020.07.186
|
[191]
|
Hang, Z.M., Xiao, X., Wen, W.X., Bin, Z.G., Huang, S.M., Xu, H. and Chen, L.X. (2016) Influence of Partial Substitution of Zr for Ti in Low-Vanadium Alloy Ti20Cr24Mn8V40Fe8 on Its Micro-Structure and Hydrogen Storage Properties. Journal of Materials Science, 34, 874.
|
[192]
|
Mao, Y., Yang, S., Wu, C., Luo, L. and Chen, Y. (2017) Preparation of (FeV80)48Ti26+xCr26 (x = 0 – 4) Alloys by the Hydride Sintering Method and Their Hydrogen Storage Performance. Journal of Alloys and Compounds, 705, 533-538. https://doi.org/10.1016/j.jallcom.2017.02.166
|
[193]
|
Chen, X.Y., Liu, B., Zhang, S.B., Ding, X. and Chen, R.R. (2022) Effect of Heat Treatment on Microstructure and Thermal Stability of Ti19Hf4V40Mn35Cr2 Hydrogen Storage Alloy. Journal of Alloys and Compounds, 917, Article ID: 165355. https://doi.org/10.1016/j.jallcom.2022.165355
|
[194]
|
Liu, B., Chen, X., Zhang, S., Ding, X. and Chen, R. (2023) Formation of Eutectic and Hydrogen Absorption/Desorption Behavior of Heat-Treated Ti19Hf4V40Mn35Cr2 Alloys. Intermetallics, 152, Article ID: 107752. https://doi.org/10.1016/j.intermet.2022.107752
|
[195]
|
Chen, Z., Luo, L., Su, Z., Liu, W., Zhang, F. and Huang, Y. (2019) Effect of LaH3 Additive on Microstructures and Hydrogen Storage Properties of V40Ti26Cr26Fe8 Alloys Prepared by Hydride Powder Sintering Method. International Journal of Hydrogen Energy, 44, 13538-13548. https://doi.org/10.1016/j.ijhydene.2019.03.038
|
[196]
|
Silva, B.H., Zlotea, C., Vaughan, G., Champion, Y., Botta, W.J. and Zepon, G. (2022) Hydrogen Absorption/Desorption Reactions of the (TiVNb)85Cr15 Multicomponent Alloy. Journal of Alloys and Compounds, 901, Article ID: 163620. https://doi.org/10.1016/j.jallcom.2022.163620
|
[197]
|
Han, Y., Wu, C., Wang, Q., Sun, D., Cheng, W., Li, X., et al. (2022) Phase Evolution Process and Hydrogen Storage Performances of V72Ti18Cr10 Alloy Prepared by Co-Precipitation-Reduction Method. Progress in Natural Science: Materials International, 32, 407-414. https://doi.org/10.1016/j.pnsc.2022.06.002
|
[198]
|
Zhang, J., Li, P., Huang, G., Zhang, W., Hu, J., Xiao, H., et al. (2021) Superior Hydrogen Sorption Kinetics of Ti0.20Zr0.20Hf0.20Nb0.40 High-Entropy Alloy. Metals, 11, Article 470. https://doi.org/10.3390/met11030470
|
[199]
|
Shen, B.Z., Fan, J.F. and Guo, H.J. (2021) Study of the Hydrogen Storage Properties of Magnesium-Containing MgxTiVNiAlCr High Entropy Alloy. Foundry Technology, 42, 565.
|
[200]
|
Jiao, W.N., Lu, Y.P., Cao, Z.Q., Wang, T.M., Li, Y.J. and Yin, G.M. (2022) Progress and Prospect of Eutectic High Entropy Alloys. Special Casting & Nonferrous Alloys, 42, 265.
|
[201]
|
Sun, Y.H., Han, L.N., Gao, R.Y. and Xiong, Z.P. (2022) Research Progress of As-Cast Eutectic High-Entropy Alloys. Nonferrous Metals Science and Engineering, 13, 27.
|
[202]
|
Luo, L., Chen, L.P., Li L.R., et al. (2023) High-Entropy Alloys for Solid Hydrogen Storage: A Review. International Journal of Hydrogen Energy, 50, 404-430. https://doi.org/10.1016/j.ijhydene.2023.07.146
|
[203]
|
Cheng, B., Li, Y.K., Li, X.X., Ke, H.B., et al. (2023) Solid-State Hydrogen Storage Properties of Ti-V-Nb-Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M = Mn, Fe, Ni). Acta Metallurgica Sinica-English Letters, 36, 1113-1122. https://doi.org/10.1007/s40195-022-01403-9
|
[204]
|
Yang, F., Wang, J., Zhang, Y., Wu, Z., Zhang, Z., Zhao, F., et al. (2022) Recent Progress on the Development of High Entropy Alloys (HEAs) for Solid Hydrogen Storage: A Review. International Journal of Hydrogen Energy, 47, 11236-11249. https://doi.org/10.1016/j.ijhydene.2022.01.141
|
[205]
|
Sahlberg, M., Karlsson, D., Zlotea, C. and Jansson, U. (2016) Superior Hydrogen Storage in High Entropy Alloys. Scientific Reports, 6, Article No. 36770. https://doi.org/10.1038/srep36770
|
[206]
|
Chen, J., Li, Z., Huang, H., Lv, Y., Liu, B., Li, Y., et al. (2022) Superior Cycle Life of Tizrfemncrv High Entropy Alloy for Hydrogen Storage. Scripta Materialia, 212, Article ID: 114548. https://doi.org/10.1016/j.scriptamat.2022.114548
|
[207]
|
Park, K.B., Park, J., Kim, Y.D., Fadonougbo, J.O., Kim, S., Kim, H., et al. (2021) Characterizations of Hydrogen Absorption and Surface Properties of Ti0.2Zr0.2Nb0.2V0.2Cr0.17Fe0.03 High Entropy Alloy with Dual Phases. Metals and Materials International, 28, 565-571. https://doi.org/10.1007/s12540-021-01071-x
|
[208]
|
Edalati, P., Floriano, R., Mohammadi, A., Li, Y., Zepon, G., Li, H., et al. (2020) Reversible Room Temperature Hydrogen Storage in High-Entropy Alloy TiZrCrMnFeNi. Scripta Materialia, 178, 387-390. https://doi.org/10.1016/j.scriptamat.2019.12.009
|
[209]
|
Zhang, C., Song, A., Yuan, Y., Wu, Y., Zhang, P., Lu, Z., et al. (2020) Study on the Hydrogen Storage Properties of a TiZrNbTa High Entropy Alloy. International Journal of Hydrogen Energy, 45, 5367-5374. https://doi.org/10.1016/j.ijhydene.2019.05.214
|
[210]
|
Fukagawa, T., Saito, Y. and Matsuyama, A. (2022) Effect of Varying Ni Content on Hydrogen Absorption-Desorption and Electrochemical Properties of Zr-Ti-Ni-Cr-Mn High-Entropy Alloys. Journal of Alloys and Compounds, 896, Article ID: 163118. https://doi.org/10.1016/j.jallcom.2021.163118
|
[211]
|
Ma, X., Ding, X., Chen, R., Gao, X., Su, Y. and Cui, H. (2022) Enhanced Hydrogen Storage Properties of ZrTiVAL1−xFex High-Entropy Alloys by Modifying the Fe Content. RSC Advances, 12, 11272-11281. https://doi.org/10.1039/d2ra01064j
|
[212]
|
Floriano, R., Zepon, G., Edalati, K., Fontana, G.L.B.G., Mohammadi, A., Ma, Z., et al. (2020) Hydrogen Storage in Tizrnbfeni High Entropy Alloys, Designed by Thermodynamic Calculations. International Journal of Hydrogen Energy, 45, 33759-33770. https://doi.org/10.1016/j.ijhydene.2020.09.047
|