[1]
|
World Health Organization (2023). Depressive Disorder (Depression). https://www.who.int/news-room/fact-sheets/detail/depression
|
[2]
|
National Institute of Mental Health (2023) Depression. National Institute of Mental Health; National Institute of Mental Health. https://www.nimh.nih.gov/health/topics/depression
|
[3]
|
Ding, W., Wang, L., Li, L., Li, H., Wu, J., Zhang, J., et al. (2024) Pathogenesis of Depression and the Potential for Traditional Chinese Medicine Treatment. Frontiers in Pharmacology, 15, Article 1407869. https://doi.org/10.3389/fphar.2024.1407869
|
[4]
|
Wang, S., Han, C., Bahk, W., Lee, S., Patkar, A.A., Masand, P.S., et al. (2018) Addressing the Side Effects of Contemporary Antidepressant Drugs: A Comprehensive Review. Chonnam Medical Journal, 54, 101-112. https://doi.org/10.4068/cmj.2018.54.2.101
|
[5]
|
Liu, C. (2018) Understanding “Medicine and Food Homology'”, Developing Utilization in Medicine Functions. Chinese Herbal Medicines, 10, 337-338. https://doi.org/10.1016/j.chmed.2018.10.006
|
[6]
|
Wei, X., Wang, D., Liu, J., Zhu, Q., Xu, Z., Niu, J., et al. (2024) Interpreting the Mechanism of Active Ingredients in Polygonati Rhizoma in Treating Depression by Combining Systemic Pharmacology and in Vitro Experiments. Nutrients, 16, Artilce 1167. https://doi.org/10.3390/nu16081167
|
[7]
|
Yang, M., Yan, T., Yu, M., Kang, J., Gao, R., Wang, P., et al. (2020) Advances in Understanding of Health-Promoting Benefits of Medicine and Food Homology Using Analysis of Gut Microbiota and Metabolomics. Food Frontiers, 1, 398-419. https://doi.org/10.1002/fft2.49
|
[8]
|
Lippolis, T., Cofano, M., Caponio, G.R., De Nunzio, V. and Notarnicola, M. (2023) Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. International Journal of Molecular Sciences, 24, Article 3813. https://doi.org/10.3390/ijms24043813
|
[9]
|
Ruhé, H.G., Mason, N.S. and Schene, A.H. (2007) Mood Is Indirectly Related to Serotonin, Norepinephrine and Dopamine Levels in Humans: A Meta-Analysis of Monoamine Depletion Studies. Molecular Psychiatry, 12, 331-359. https://doi.org/10.1038/sj.mp.4001949
|
[10]
|
Bell, C., Abrams, J. and Nutt, D. (2001) Tryptophan Depletion and Its Implications for Psychiatry. British Journal of Psychiatry, 178, 399-405. https://doi.org/10.1192/bjp.178.5.399
|
[11]
|
Rothenberg, D.O. and Zhang, L. (2019) Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients, 11, Article 1361. https://doi.org/10.3390/nu11061361
|
[12]
|
Mello, A.D.A.F.D., Mello, M.F.D., Carpenter, L.L. and Price, L.H. (2003) Update on Stress and Depression: The Role of the Hypothalamic-Pituitary-Adrenal (HPA) Axis. Revista Brasileira de Psiquiatria, 25, 231-238. https://doi.org/10.1590/s1516-44462003000400010
|
[13]
|
Sheline, Y.I. (2003) Neuroimaging Studies of Mood Disorder Effects on the Brain. Biological Psychiatry, 54, 338-352. https://doi.org/10.1016/s0006-3223(03)00347-0
|
[14]
|
Lee, B., Kim, H., Park, S. and Kim, Y. (2007) Decreased Plasma BDNF Level in Depressive Patients. Journal of Affective Disorders, 101, 239-244. https://doi.org/10.1016/j.jad.2006.11.005
|
[15]
|
Duman, C.H., Schlesinger, L., Kodama, M., Russell, D.S. and Duman, R.S. (2007) A Role for MAP Kinase Signaling in Behavioral Models of Depression and Antidepressant Treatment. Biological Psychiatry, 61, 661-670. https://doi.org/10.1016/j.biopsych.2006.05.047
|
[16]
|
Setiawan, E., Wilson, A.A., Mizrahi, R., Rusjan, P.M., Miler, L., Rajkowska, G., et al. (2015) Role of Translocator Protein Density, a Marker of Neuroinflammation, in the Brain during Major Depressive Episodes. JAMA Psychiatry, 72, 268-275. https://doi.org/10.1001/jamapsychiatry.2014.2427
|
[17]
|
Miller, A.H., Maletic, V. and Raison, C.L. (2009) Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biological Psychiatry, 65, 732-741. https://doi.org/10.1016/j.biopsych.2008.11.029
|
[18]
|
Pasco, J.A., Nicholson, G.C., Williams, L.J., Jacka, F.N., Henry, M.J., Kotowicz, M.A., et al. (2010) Association of High-Sensitivity C-Reactive Protein with de Novo Major Depression. British Journal of Psychiatry, 197, 372-377. https://doi.org/10.1192/bjp.bp.109.076430
|
[19]
|
Owens, M. (2004) Selectivity of Antidepressants: From the Monoamine Hypothesis of Depression to the SSRI Revolution and beyond. Journal of Clinical Psychiatry, 65, 5-10. https://www.psychiatrist.com/read-pdf/19194/
|
[20]
|
Reigstad, C.S., Salmonson, C.E., III, J.F.R., Szurszewski, J.H., Linden, D.R., Sonnenburg, J.L., et al. (2014) Gut Microbes Promote Colonic Serotonin Production through an Effect of Short-Chain Fatty Acids on Enterochromaffin Cells. The FASEB Journal, 29, 1395-1403. https://doi.org/10.1096/fj.14-259598
|
[21]
|
Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., et al. (2015) Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 161, 264-276. https://doi.org/10.1016/j.cell.2015.02.047
|
[22]
|
Chen, Y., Xu, J. and Chen, Y. (2021) Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13, Article 2099. https://doi.org/10.3390/nu13062099
|
[23]
|
Barandouzi, Z.A., Starkweather, A.R., Henderson, W.A., Gyamfi, A. and Cong, X.S. (2020) Altered Composition of Gut Microbiota in Depression: A Systematic Review. Frontiers in Psychiatry, 11, Article 541. https://doi.org/10.3389/fpsyt.2020.00541
|
[24]
|
Mikulska, J., Juszczyk, G., Gawrońska-Grzywacz, M. and Herbet, M. (2021) HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sciences, 11, Article 1298. https://doi.org/10.3390/brainsci11101298
|
[25]
|
Wang, S., Zhou, S., Han, Z., Yu, B., Xu, Y., Lin, Y., et al. (2024) From Gut to Brain: Understanding the Role of Microbiota in Inflammatory Bowel Disease. Frontiers in Immunology, 15, Article 1384270. https://doi.org/10.3389/fimmu.2024.1384270
|
[26]
|
Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L.R. and Scaldaferri, F. (2023) Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Internal and Emergency Medicine, 19, 275-293. https://doi.org/10.1007/s11739-023-03374-w
|
[27]
|
Hakansson, A. and Molin, G. (2011) Gut Microbiota and Inflammation. Nutrients, 3, 637-682. https://doi.org/10.3390/nu3060637
|
[28]
|
Shahini, A. and Shahini, A. (2022) Role of Interleukin-6-Mediated Inflammation in the Pathogenesis of Inflammatory Bowel Disease: Focus on the Available Therapeutic Approaches and Gut Microbiome. Journal of Cell Communication and Signaling, 17, 55-74. https://doi.org/10.1007/s12079-022-00695-x
|
[29]
|
Luqman, A., He, M., Hassan, A., Ullah, M., Zhang, L., Rashid Khan, M., et al. (2024) Mood and Microbes: A Comprehensive Review of Intestinal Microbiota’s Impact on Depression. Frontiers in Psychiatry, 15, Article 1295766. https://doi.org/10.3389/fpsyt.2024.1295766
|
[30]
|
Wang, M., Song, Z., Lai, S., Tang, F., Dou, L. and Yang, F. (2024) Depression-associated Gut Microbes, Metabolites and Clinical Trials. Frontiers in Microbiology, 15, Article 1292004. https://doi.org/10.3389/fmicb.2024.1292004
|
[31]
|
Shi, M., Yang, J., Liu, Y., Zhao, H., Li, M., Yang, D., et al. (2024) Huanglian Wendan Decoction Improves Insomnia in Rats by Regulating BDNF/TrkB Signaling Pathway through Gut Microbiota-Mediated Scfas and Affecting Microglia Polarization. Molecular Neurobiology. https://doi.org/10.1007/s12035-024-04330-1
|
[32]
|
Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11, Article 25. https://doi.org/10.3389/fendo.2020.00025
|
[33]
|
Zhou, H., S. Beevers, C. and Huang, S. (2011) The Targets of Curcumin. Current Drug Targets, 12, 332-347. https://doi.org/10.2174/138945011794815356
|
[34]
|
He, Y., Yue, Y., Zheng, X., Zhang, K., Chen, S. and Du, Z. (2015) Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules, 20, 9183-9213. https://doi.org/10.3390/molecules20059183
|
[35]
|
Hassaninasab, A., Hashimoto, Y., Tomita-Yokotani, K. and Kobayashi, M. (2011) Discovery of the Curcumin Metabolic Pathway Involving a Unique Enzyme in an Intestinal Microorganism. Proceedings of the National Academy of Sciences of the United States of America, 108, 6615-6620. https://doi.org/10.1073/pnas.1016217108
|
[36]
|
Cheng, K.K., Yeung, C.F., Ho, S.W., Chow, S.F., Chow, A.H.L. and Baum, L. (2012) Highly Stabilized Curcumin Nanoparticles Tested in an in Vitro Blood-Brain Barrier Model and in Alzheimer’s Disease Tg2576 Mice. The AAPS Journal, 15, 324-336. https://doi.org/10.1208/s12248-012-9444-4
|
[37]
|
Kumar, N. and Pruthi, V. (2014) Potential Applications of Ferulic Acid from Natural Sources. Biotechnology Reports, 4, 86-93. https://doi.org/10.1016/j.btre.2014.09.002
|
[38]
|
Liu, Y., Shen, J., Xu, L., Li, H., Li, Y. and Yi, L. (2017) Ferulic Acid Inhibits Neuro-Inflammation in Mice Exposed to Chronic Unpredictable Mild Stress. International Immunopharmacology, 45, 128-134. https://doi.org/10.1016/j.intimp.2017.02.007
|
[39]
|
Habtemariam, S. (2017) Protective Effects of Caffeic Acid and the Alzheimer's Brain: An Update. Mini-Reviews in Medicinal Chemistry, 17, 667-674. https://doi.org/10.2174/1389557516666161130100947
|
[40]
|
Taram, F., Winter, A.N. and Linseman, D.A. (2016) Neuroprotection Comparison of Chlorogenic Acid and Its Metabolites against Mechanistically Distinct Cell Death-Inducing Agents in Cultured Cerebellar Granule Neurons. Brain Research, 1648, 69-80. https://doi.org/10.1016/j.brainres.2016.07.028
|
[41]
|
Zheng, X., Cheng, Y., Chen, Y., Yue, Y., Li, Y., Xia, S., et al. (2019) Ferulic Acid Improves Depressive-Like Behavior in Prenatally-Stressed Offspring Rats via Anti-Inflammatory Activity and HPA Axis. International Journal of Molecular Sciences, 20, Article 493. https://doi.org/10.3390/ijms20030493
|
[42]
|
Liu, Y., Hu, C., Shen, J., Wu, S., Li, Y. and Yi, L. (2017) Elevation of Synaptic Protein Is Associated with the Antidepressant-Like Effects of Ferulic Acid in a Chronic Model of Depression. Physiology & Behavior, 169, 184-188. https://doi.org/10.1016/j.physbeh.2016.12.003
|
[43]
|
Han, D.S., Lee, M.J. and Kim, J.H. (2006) Antioxidant and Apoptosis-Inducing Activities of Ellagic Acid. Anticancer Research, 26, 3601-3606.
|
[44]
|
Mc Cormack, B., Maenhoudt, N., Fincke, V., Stejskalova, A., Greve, B., Kiesel, L., et al. (2021) The Ellagic Acid Metabolites Urolithin a and B Differentially Affect Growth, Adhesion, Motility, and Invasion of Endometriotic Cells in Vitro. Human Reproduction, 36, 1501-1519. https://doi.org/10.1093/humrep/deab053
|
[45]
|
DaSilva, N.A., Nahar, P.P., Ma, H., Eid, A., Wei, Z., Meschwitz, S., et al. (2017) Pomegranate Ellagitannin-Gut Microbial-Derived Metabolites, Urolithins, Inhibit Neuroinflammation in Vitro. Nutritional Neuroscience, 22, 185-195. https://doi.org/10.1080/1028415x.2017.1360558
|
[46]
|
Xu, J., Yuan, C., Wang, G., Luo, J., Ma, H., Xu, L., et al. (2018) Urolithins Attenuate Lps-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. Journal of Agricultural and Food Chemistry, 66, 571-580. https://doi.org/10.1021/acs.jafc.7b03285
|
[47]
|
Kim, M., Marsh, E.N.G., Kim, S. and Han, J. (2010) Conversion of (3s, 4r)-Tetrahydrodaidzein to (3s)-Equol by THD Reductase: Proposed Mechanism Involving a Radical Intermediate. Biochemistry, 49, 5582-5587. https://doi.org/10.1021/bi100465y
|
[48]
|
Walsh, K.R. and Failla, M.L. (2009) Transport and Metabolism of Equol by CaCo-2 Human Intestinal Cells. Journal of Agricultural and Food Chemistry, 57, 8297-8302. https://doi.org/10.1021/jf9011906
|
[49]
|
Ariyani, W. and Koibuchi, N. (2024) The Effect of Soy Isoflavones in Brain Development: The Emerging Role of Multiple Signaling Pathways and Future Perspectives. Endocrine Journal, 71, 317-333. https://doi.org/10.1507/endocrj.ej23-0314
|
[50]
|
Subedi, L., Ji, E., Shin, D., Jin, J., Yeo, J. and Kim, S. (2017) Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection in Vitro. Nutrients, 9, Article 207. https://doi.org/10.3390/nu9030207
|
[51]
|
Liu, C., Boeren, S., Miro Estruch, I. and Rietjens, I.M.C.M. (2022) The Gut Microbial Metabolite Pyrogallol Is a More Potent Inducer of Nrf2-Associated Gene Expression than Its Parent Compound Green Tea (-)-Epigallocatechin Gallate. Nutrients, 14, Article 3392. https://doi.org/10.3390/nu14163392
|
[52]
|
Takagaki, A. and Nanjo, F. (2010) Metabolism of (−)-Epigallocatechin Gallate by Rat Intestinal Flora. Journal of Agricultural and Food Chemistry, 58, 1313-1321. https://doi.org/10.1021/jf903375s
|
[53]
|
Wen, L., Tang, L., Zhang, M., Wang, C., Li, S., Wen, Y., et al. (2022) Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor. International Journal of Molecular Sciences, 23, Article 6159. https://doi.org/10.3390/ijms23116159
|
[54]
|
Wang, W., Lin, P., Ma, L., Xu, K. and Lin, X. (2016) Separation and Determination of Flavonoids in Three Traditional Chinese Medicines by Capillary Electrophoresis with Amperometric Detection. Journal of Separation Science, 39, 1357-1362. https://doi.org/10.1002/jssc.201501287
|
[55]
|
Zhang, Z., Peng, X., Li, S., Zhang, N., Wang, Y. and Wei, H. (2014) Isolation and Identification of Quercetin Degrading Bacteria from Human Fecal Microbes. PLOS ONE, 9, e90531. https://doi.org/10.1371/journal.pone.0090531
|
[56]
|
Vissiennon, C., Nieber, K., Kelber, O. and Butterweck, V. (2012) Route of Administration Determines the Anxiolytic Activity of the Flavonols Kaempferol, Quercetin and Myricetin—Are They Prodrugs? The Journal of Nutritional Biochemistry, 23, 733-740. https://doi.org/10.1016/j.jnutbio.2011.03.017
|
[57]
|
Rinwa, P. and Kumar, A. (2013) Quercetin Suppress Microglial Neuroinflammatory Response and Induce Antidepressent-Like Effect in Olfactory Bulbectomized Rats. Neuroscience, 255, 86-98. https://doi.org/10.1016/j.neuroscience.2013.09.044
|
[58]
|
Xia, J., Kotani, A., Hakamata, H. and Kusu, F. (2006) Determination of Hesperidin in Pericarpium Citri Reticulatae by Semi-Micro HPLC with Electrochemical Detection. Journal of Pharmaceutical and Biomedical Analysis, 41, 1401-1405. https://doi.org/10.1016/j.jpba.2006.02.030
|
[59]
|
Xie, L., Gu, Z., Liu, H., Jia, B., Wang, Y., Cao, M., et al. (2020) The Anti-Depressive Effects of Hesperidin and the Relative Mechanisms Based on the NLRP3 Inflammatory Signaling Pathway. Frontiers in Pharmacology, 11, Article 1251. https://doi.org/10.3389/fphar.2020.01251
|
[60]
|
Amaretti, A., Raimondi, S., Leonardi, A., Quartieri, A. and Rossi, M. (2015) Hydrolysis of the Rutinose-Conjugates Flavonoids Rutin and Hesperidin by the Gut Microbiota and Bifidobacteria. Nutrients, 7, 2788-2800. https://doi.org/10.3390/nu7042788
|
[61]
|
Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R. and Iranshahi, M. (2014) Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phytotherapy Research, 29, 323-331. https://doi.org/10.1002/ptr.5256
|
[62]
|
Fu, H., Liu, L., Tong, Y., Li, Y., Zhang, X., Gao, X., et al. (2019) The Antidepressant Effects of Hesperidin on Chronic Unpredictable Mild Stress-Induced Mice. European Journal of Pharmacology, 853, 236-246. https://doi.org/10.1016/j.ejphar.2019.03.035
|
[63]
|
Kwatra, M., Ahmed, S., Gawali, B., Panda, S.R. and Naidu, V. (2020) Hesperidin Alleviates Chronic Restraint Stress and Lipopolysaccharide-Induced Hippocampus and Frontal Cortex Damage in Mice: Role of TLR4/NF-κB, P38 MAPK/JNK, Nrf2/ARE Signaling. Neurochemistry International, 140, Article ID: 104835. https://doi.org/10.1016/j.neuint.2020.104835
|
[64]
|
Gao, Z., Huang, K., Yang, X. and Xu, H. (1999) Free Radical Scavenging and Antioxidant Activities of Flavonoids Extracted from the Radix of Scutellaria Baicalensis Georgi. Biochimica et Biophysica Acta (BBA)—General Subjects, 1472, 643-650. https://doi.org/10.1016/s0304-4165(99)00152-x
|
[65]
|
Liu, L., Dong, Y., Shan, X., Li, L., Xia, B. and Wang, H. (2019) Anti-Depressive Effectiveness of Baicalin in Vitro and in Vivo. Molecules, 24, Article 326. https://doi.org/10.3390/molecules24020326
|
[66]
|
Akao, T., Kawabata, K., Yanagisawa, E., Ishihara, K., Mizuhara, Y., Wakui, Y., et al. (2000) Balicalin, the Predominant Flavone Glucuronide of Scutellariae Radix, Is Absorbed from the Rat Gastrointestinal Tract as the Aglycone and Restored to Its Original Form. Journal of Pharmacy and Pharmacology, 52, 1563-1568. https://doi.org/10.1211/0022357001777621
|
[67]
|
Chen, M., Lai, L., Li, X., Zhang, X., He, X., Liu, W., et al. (2016) Baicalein Attenuates Neurological Deficits and Preserves Blood-Brain Barrier Integrity in a Rat Model of Intracerebral Hemorrhage. Neurochemical Research, 41, 3095-3102. https://doi.org/10.1007/s11064-016-2032-8
|
[68]
|
Du, H., Chen, X., Zhang, L., Liu, Y., Zhan, C., Chen, J., et al. (2019) Microglial Activation and Neurobiological Alterations in Experimental Autoimmune Prostatitis-Induced Depressive-Like Behavior in Mice. Neuropsychiatric Disease and Treatment, 15, 2231-2245. https://doi.org/10.2147/ndt.s211288
|
[69]
|
Yu, H., Zhang, F. and Guan, X. (2019) Baicalin Reverse Depressive-Like Behaviors through Regulation SIRT1-NF-κB Signaling Pathway in Olfactory Bulbectomized Rats. Phytotherapy Research, 33, 1480-1489. https://doi.org/10.1002/ptr.6340
|
[70]
|
Yin, X., Li, X., Hao, Y., Zhao, Y., Zhou, J. and Shi, H. (2015) Xylocarpin H, a Limonoid of Xylocarpus granatum, Produces Antidepressant-Like Activities in Mice. Journal of Behavioral and Brain Science, 5, 524-532. https://doi.org/10.4236/jbbs.2015.511050
|
[71]
|
Adediwura, F.A. and Bola, O.A. (2013) Antidepressant Activities of the Methanol Extract, Petroleum Ether and Ethyl Acetate Fractions of Morus mesozygia Stem Bark. Pharmacology & Pharmacy, 4, 100-103. https://doi.org/10.4236/pp.2013.41014
|