[1]
|
Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820
|
[2]
|
Wang, X. and Wei. W. (2022) HR Positive/HER2 Negative Breast Cancer CDK4/6 Inhibitor Combined with Endocrine Therapy—Interpretation of the Chinese Society of Clinical Oncology (CSCO) Guidelines for Diagnosis and Treatment of Breast Cancer (2022 Edition). Zhejiang Medical, 44, 2595-2599.
|
[3]
|
Sun, Y., Zhao, Z., Yang, Z., Xu, F., Lu, H., Zhu, Z., et al. (2017) Risk Factors and Preventions of Breast Cancer. International Journal of Biological Sciences, 13, 1387-1397. https://doi.org/10.7150/ijbs.21635
|
[4]
|
Rajput, S., Sharma, P.K. and Malviya, R. (2023) Biomarkers and Treatment Strategies for Breast Cancer Recurrence. Current Drug Targets, 24, 1209-1220. https://doi.org/10.2174/0113894501258059231103072025
|
[5]
|
Bahmad, H.F., Chamaa, F., Assi, S., Chalhoub, R.M., Abou-Antoun, T. and Abou-Kheir, W. (2019) Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Frontiers in Molecular Neuroscience, 12, Article 131. https://doi.org/10.3389/fnmol.2019.00131
|
[6]
|
Zheng, Q., Zhang, M., Zhou, F., Zhang, L. and Meng, X. (2021) The Breast Cancer Stem Cells Traits and Drug Resistance. Frontiers in Pharmacology, 11, Article 599965. https://doi.org/10.3389/fphar.2020.599965
|
[7]
|
Zhang, L. (2023) The Role of Mesenchymal Stem Cells in Modulating the Breast Cancer Microenvironment. Cell Transplantation, 32. https://doi.org/10.1177/09636897231220073
|
[8]
|
Jansen, J., Thompson, J.M., Dugan, M.J., Nolan, P., Wiemann, M.C., Birhiray, R., et al. (2002) Peripheral Blood Progenitor Cell Transplantation. Therapeutic Apheresis, 6, 5-14. https://doi.org/10.1046/j.1526-0968.2002.00392.x
|
[9]
|
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. (2003) Prospective Identification of Tumorigenic Breast Cancer Cells. Proceedings of the National Academy of Sciences, 100, 3983-3988. https://doi.org/10.1073/pnas.0530291100
|
[10]
|
Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., et al. (2007) ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 1, 555-567. https://doi.org/10.1016/j.stem.2007.08.014
|
[11]
|
Liu, X. and Bo, L. (2023) Research Progress of Stem Cell Immunotherapy Targeting Breast Cancer. Chinese Cancer, 32, 550-556.
|
[12]
|
Lytle, N.K., Barber, A.G. and Reya, T. (2018) Stem Cell Fate in Cancer Growth, Progression and Therapy Resistance. Nature Reviews Cancer, 18, 669-680. https://doi.org/10.1038/s41568-018-0056-x
|
[13]
|
Borah, A., Raveendran, S., Rochani, A., Maekawa, T. and Kumar, D.S. (2015) Targeting Self-Renewal Pathways in Cancer Stem Cells: Clinical Implications for Cancer Therapy. Oncogenesis, 4, e177. https://doi.org/10.1038/oncsis.2015.35
|
[14]
|
Pang, M., Siedlik, M.J., Han, S., Stallings-Mann, M., Radisky, D.C. and Nelson, C.M. (2016) Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to Control Breast Cancer Stem-Like Cells. Cancer Research, 76, 5277-5287. https://doi.org/10.1158/0008-5472.can-16-0579
|
[15]
|
Hüser, L., Novak, D., Umansky, V., Altevogt, P. and Utikal, J. (2018) Targeting SOX2 in Anticancer Therapy. Expert Opinion on Therapeutic Targets, 22, 983-991. https://doi.org/10.1080/14728222.2018.1538359
|
[16]
|
Batlle, E. and Clevers, H. (2017) Cancer Stem Cells Revisited. Nature Medicine, 23, 1124-1134. https://doi.org/10.1038/nm.4409
|
[17]
|
Lathia, J.D., Mack, S.C., Mulkearns-Hubert, E.E., Valentim, C.L.L. and Rich, J.N. (2015) Cancer Stem Cells in Glioblastoma. Genes & Development, 29, 1203-1217. https://doi.org/10.1101/gad.261982.115
|
[18]
|
Meacham, C.E. and Morrison, S.J. (2013) Tumour Heterogeneity and Cancer Cell Plasticity. Nature, 501, 328-337. https://doi.org/10.1038/nature12624
|
[19]
|
Chaffer, C.L., Marjanovic, N.D., Lee, T., Bell, G., Kleer, C.G., Reinhardt, F., et al. (2013) Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity. Cell, 154, 61-74. https://doi.org/10.1016/j.cell.2013.06.005
|
[20]
|
Goldman, A., Majumder, B., Dhawan, A., Ravi, S., Goldman, D., Kohandel, M., et al. (2015) Temporally Sequenced Anticancer Drugs Overcome Adaptive Resistance by Targeting a Vulnerable Chemotherapy-Induced Phenotypic Transition. Nature Communications, 6, Article No. 6139. https://doi.org/10.1038/ncomms7139
|
[21]
|
Liu, S., Cong, Y., Wang, D., Sun, Y., Deng, L., Liu, Y., et al. (2014) Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of Their Normal Counterparts. Stem Cell Reports, 2, 78-91. https://doi.org/10.1016/j.stemcr.2013.11.009
|
[22]
|
Takahashi, R., Miyazaki, H. and Ochiya, T. (2014) The Role of Micrornas in the Regulation of Cancer Stem Cells. Frontiers in Genetics, 4, Article 295. https://doi.org/10.3389/fgene.2013.00295
|
[23]
|
van den Beucken, T., Koch, E., Chu, K., Rupaimoole, R., Prickaerts, P., Adriaens, M., et al. (2014) Hypoxia Promotes Stem Cell Phenotypes and Poor Prognosis through Epigenetic Regulation of Dicer. Nature Communications, 5, Article No. 5203. https://doi.org/10.1038/ncomms6203
|
[24]
|
Zeng, X., Liu, C., Yao, J., Wan, H., Wan, G., Li, Y., et al. (2021) Breast Cancer Stem Cells, Heterogeneity, Targeting Therapies and Therapeutic Implications. Pharmacological Research, 163, Article 105320. https://doi.org/10.1016/j.phrs.2020.105320
|
[25]
|
Yu, J., Chen, H., Xu, J. and Zhou, P. (2022) Research Advances in the Role and Pharmaceuticals of ATP-Binding Cassette Transporters in Autoimmune Diseases. Molecular and Cellular Biochemistry, 477, 1075-1091. https://doi.org/10.1007/s11010-022-04354-y
|
[26]
|
Tan, K.W., Li, Y., Paxton, J.W., Birch, N.P. and Scheepens, A. (2013) Identification of Novel Dietary Phytochemicals Inhibiting the Efflux Transporter Breast Cancer Resistance Protein (BCRP/ABCG2). Food Chemistry, 138, 2267-2274. https://doi.org/10.1016/j.foodchem.2012.12.021
|
[27]
|
McIntosh, K., Balch, C. and Tiwari, A.K. (2016) Tackling Multidrug Resistance Mediated by Efflux Transporters in Tumor-Initiating Cells. Expert Opinion on Drug Metabolism & Toxicology, 12, 633-644. https://doi.org/10.1080/17425255.2016.1179280
|
[28]
|
Di, C. and Zhao, Y. (2014) Multiple Drug Resistance Due to Resistance to Stem Cells and Stem Cell Treatment Progress in Cancer (Review). Experimental and Therapeutic Medicine, 9, 289-293. https://doi.org/10.3892/etm.2014.2141
|
[29]
|
Dean, M., Moitra, K. and Allikmets, R. (2022) The Human ATP‐Binding Cassette (ABC) Transporter Superfamily. Human Mutation, 43, 1162-1182. https://doi.org/10.1002/humu.24418
|
[30]
|
Zhu, Y., Liu, C., Nadiminty, N., Lou, W., Tummala, R., Evans, C.P., et al. (2013) Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer. Molecular Cancer Therapeutics, 12, 1829-1836. https://doi.org/10.1158/1535-7163.mct-13-0208
|
[31]
|
Vulsteke, C., Lambrechts, D., Dieudonné, A., Hatse, S., Brouwers, B., van Brussel, T., et al. (2013) Genetic Variability in the Multidrug Resistance Associated Protein-1 (ABCC1/MRP1) Predicts Hematological Toxicity in Breast Cancer Patients Receiving (neo-)Adjuvant Chemotherapy with 5-Fluorouracil, Epirubicin and Cyclophosphamide (FEC). Annals of Oncology, 24, 1513-1525. https://doi.org/10.1093/annonc/mdt008
|
[32]
|
Das, S., Mukherjee, P., Chatterjee, R., Jamal, Z. and Chatterji, U. (2019) Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-Encapsulated Nanoparticles. Molecular Cancer Therapeutics, 18, 680-692. https://doi.org/10.1158/1535-7163.mct-18-0409
|
[33]
|
Sun, M., Yang, C., Zheng, J., Wang, M., Chen, M., Le, D.Q.S., et al. (2015) Enhanced Efficacy of Chemotherapy for Breast Cancer Stem Cells by Simultaneous Suppression of Multidrug Resistance and Antiapoptotic Cellular Defense. Acta Biomaterialia, 28, 171-182. https://doi.org/10.1016/j.actbio.2015.09.029
|
[34]
|
Bhattacharya, S., Srinivasan, K., Abdisalaam, S., Su, F., Raj, P., Dozmorov, I., et al. (2017) RAD51 Interconnects between DNA Replication, DNA Repair and Immunity. Nucleic Acids Research, 45, 4590-4605. https://doi.org/10.1093/nar/gkx126
|
[35]
|
Chen, W., Dong, J., Haiech, J., Kilhoffer, M. and Zeniou, M. (2016) Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells International, 2016, Article 1740936. https://doi.org/10.1155/2016/1740936
|
[36]
|
Sharma, N.K., Ansari, U., Churchill, G., Patel, K. and Feigenberg, S. (2018) Assessment of Accelerated Partial Breast Irradiation as Monotherapy Following Breast Conserving Surgery in the Treatment of Favorable Risk Breast Cancer. Advances in Breast Cancer Research, 7, 33-64. https://doi.org/10.4236/abcr.2018.71004
|
[37]
|
Wang, J., Wang, H. and Qian, H. (2018) Biological Effects of Radiation on Cancer Cells. Military Medical Research, 5, Article No. 20. https://doi.org/10.1186/s40779-018-0167-4
|
[38]
|
Konge, J., Leteurtre, F., Goislard, M., Biard, D., Morel-Altmeyer, S., Vaurijoux, A., et al. (2018) Breast Cancer Stem Cell-Like Cells Generated during TGFβ-Induced EMT Are Radioresistant. Oncotarget, 9, 23519-23531. https://doi.org/10.18632/oncotarget.25240
|
[39]
|
Liu, Y., Zheng, C., Huang, Y., He, M., Xu, W.W. and Li, B. (2021) Molecular Mechanisms of Chemo‐ and Radiotherapy Resistance and the Potential Implications for Cancer Treatment. MedComm, 2, 315-340. https://doi.org/10.1002/mco2.55
|
[40]
|
Meyer, F., Engel, A.M., Krause, A.K., Wagner, T., Poole, L., Dubrovska, A., et al. (2022) Efficient DNA Repair Mitigates Replication Stress Resulting in Less Immunogenic Cytosolic DNA in Radioresistant Breast Cancer Stem Cells. Frontiers in Immunology, 13, Article 765284. https://doi.org/10.3389/fimmu.2022.765284
|
[41]
|
Chang, C., Zhang, M., Rajapakshe, K., Coarfa, C., Edwards, D., Huang, S., et al. (2015) Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports, 5, 378-391. https://doi.org/10.1016/j.stemcr.2015.07.009
|
[42]
|
Oshi, M., Gandhi, S., Yan, L., Tokumaru, Y., Wu, R., Yamada, A., et al. (2022) Abundance of Reactive Oxygen Species (ROS) Is Associated with Tumor Aggressiveness, Immune Response, and Worse Survival in Breast Cancer. Breast Cancer Research and Treatment, 194, 231-241. https://doi.org/10.1007/s10549-022-06633-0
|
[43]
|
Chen, W., Dong, J., Haiech, J., Kilhoffer, M. and Zeniou, M. (2016) Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells International, 2016, Article 1740936. https://doi.org/10.1155/2016/1740936
|
[44]
|
Wells, A., Griffith, L., Wells, J.Z. and Taylor, D.P. (2013) The Dormancy Dilemma: Quiescence versus Balanced Proliferation. Cancer Research, 73, 3811-3816. https://doi.org/10.1158/0008-5472.can-13-0356
|
[45]
|
Brown, J.A., Yonekubo, Y., Hanson, N., Sastre-Perona, A., Basin, A., Rytlewski, J.A., et al. (2017) TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell, 21, 650-664.E8. https://doi.org/10.1016/j.stem.2017.10.001
|
[46]
|
Sachdeva, R., Wu, M., Johnson, K., Kim, H., Celebre, A., Shahzad, U., et al. (2019) BMP Signaling Mediates Glioma Stem Cell Quiescence and Confers Treatment Resistance in Glioblastoma. Scientific Reports, 9, Article No. 14569. https://doi.org/10.1038/s41598-019-51270-1
|
[47]
|
Corvaisier, M., Bauzone, M., Corfiotti, F., Renaud, F., Amrani, M.E., Monté, D., et al. (2016) Regulation of Cellular Quiescence by YAP/TAZ and Cyclin E1 in Colon Cancer Cells: Implication in Chemoresistance and Cancer Relapse. Oncotarget, 7, 56699-56712. https://doi.org/10.18632/oncotarget.11057
|
[48]
|
Yue, F., Bi, P., Wang, C., Shan, T., Nie, Y., Ratliff, T.L., et al. (2017) Pten Is Necessary for the Quiescence and Maintenance of Adult Muscle Stem Cells. Nature Communications, 8, Article No. 14328. https://doi.org/10.1038/ncomms14328
|
[49]
|
Ren, R., Ocampo, A., Liu, G. and Izpisua Belmonte, J.C. (2017) Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metabolism, 26, 460-474. https://doi.org/10.1016/j.cmet.2017.07.019
|
[50]
|
Ye, S., Ding, Y., Jia, W., Liu, X., Feng, J., Zhu, Q., et al. (2019) SET Domain-Containing Protein 4 Epigenetically Controls Breast Cancer Stem Cell Quiescence. Cancer Research, 79, 4729-4743. https://doi.org/10.1158/0008-5472.can-19-1084
|
[51]
|
Baldominos, P., Barbera-Mourelle, A., Barreiro, O., Huang, Y., Wight, A., Cho, J., et al. (2022) Quiescent Cancer Cells Resist T Cell Attack by Forming an Immunosuppressive Niche. Cell, 185, 1694-1708.E19. https://doi.org/10.1016/j.cell.2022.03.033
|
[52]
|
Li, C., Qiu, S., Liu, X., Guo, F., Zhai, J., Li, Z., et al. (2023) Extracellular Matrix-Derived Mechanical Force Governs Breast Cancer Cell Stemness and Quiescence Transition through Integrin-DDR Signaling. Signal Transduction and Targeted Therapy, 8, Article No. 247. https://doi.org/10.1038/s41392-023-01453-0
|
[53]
|
Hinshaw, D.C. and Shevde, L.A. (2019) The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Research, 79, 4557-4566. https://doi.org/10.1158/0008-5472.can-18-3962
|
[54]
|
Deepak, K.G.K., Vempati, R., Nagaraju, G.P., Dasari, V.R., Nagini, S., Rao, D.N., et al. (2020) Tumor Microenvironment: Challenges and Opportunities in Targeting Metastasis of Triple Negative Breast Cancer. Pharmacological Research, 153, Article 104683. https://doi.org/10.1016/j.phrs.2020.104683
|
[55]
|
Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., et al. (2020) Targeting Cancer Stem Cell Pathways for Cancer Therapy. Signal Transduction and Targeted Therapy, 5, Article No. 8. https://doi.org/10.1038/s41392-020-0110-5
|
[56]
|
He, J., Lee, H., Saha, S., Ruan, D., Guo, H. and Chan, C. (2019) Inhibition of USP2 Eliminates Cancer Stem Cells and Enhances TNBC Responsiveness to Chemotherapy. Cell Death & Disease, 10, Article No. 285. https://doi.org/10.1038/s41419-019-1512-6
|
[57]
|
Aponte, P.M. and Caicedo, A. (2017) Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells International, 2017, Article 5619472. https://doi.org/10.1155/2017/5619472
|
[58]
|
Guha, A., Goswami, K.K., Sultana, J., Ganguly, N., Choudhury, P.R., Chakravarti, M., et al. (2023) Cancer Stem Cell-Immune Cell Crosstalk in Breast Tumor Microenvironment: A Determinant of Therapeutic Facet. Frontiers in Immunology, 14, Article 1245421. https://doi.org/10.3389/fimmu.2023.1245421
|
[59]
|
Ge, Z. and Ding, S. (2020) The Crosstalk between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Frontiers in Oncology, 10, Article 590941. https://doi.org/10.3389/fonc.2020.590941
|
[60]
|
Wan, S., Zhao, E., Kryczek, I., Vatan, L., Sadovskaya, A., Ludema, G., et al. (2014) Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology, 147, 1393-1404. https://doi.org/10.1053/j.gastro.2014.08.039
|
[61]
|
Bonavita, E., Galdiero, M.R., Jaillon, S. and Mantovani, A. (2015) Phagocytes as Corrupted Policemen in Cancer-Related Inflammation. Advances in Cancer Research, 128, 141-171. https://doi.org/10.1016/bs.acr.2015.04.013
|
[62]
|
Yu, T. and Di, G. (2017) Role of Tumor Microenvironment in Triple-Negative Breast Cancer and Its Prognostic Significance. Chinese Journal of Cancer Research, 29, 237-252. https://doi.org/10.21147/j.issn.1000-9604.2017.03.10
|
[63]
|
Adams, S., Gray, R.J., Demaria, S., Goldstein, L., Perez, E.A., Shulman, L.N., et al. (2014) Prognostic Value of Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancers from Two Phase III Randomized Adjuvant Breast Cancer Trials: ECOG 2197 and ECOG 1199. Journal of Clinical Oncology, 32, 2959-2966. https://doi.org/10.1200/jco.2013.55.0491
|
[64]
|
Miyan, M., Schmidt-Mende, J., Kiessling, R., Poschke, I. and de Boniface, J. (2016) Differential Tumor Infiltration by T-Cells Characterizes Intrinsic Molecular Subtypes in Breast Cancer. Journal of Translational Medicine, 14, Article No. 227. https://doi.org/10.1186/s12967-016-0983-9
|
[65]
|
Melaiu, O., Lucarini, V., Cifaldi, L. and Fruci, D. (2020) Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Frontiers in Immunology, 10, Article 3038. https://doi.org/10.3389/fimmu.2019.03038
|
[66]
|
Wang, B., Wang, Q., Wang, Z., Jiang, J., Yu, S., Ping, Y., et al. (2014) Metastatic Consequences of Immune Escape from NK Cell Cytotoxicity by Human Breast Cancer Stem Cells. Cancer Research, 74, 5746-5757. https://doi.org/10.1158/0008-5472.can-13-2563
|
[67]
|
Nallasamy, P., Nimmakayala, R.K., Parte, S., Are, A.C., Batra, S.K. and Ponnusamy, M.P. (2022) Tumor Microenvironment Enriches the Stemness Features: The Architectural Event of Therapy Resistance and Metastasis. Molecular Cancer, 21, Article No. 225. https://doi.org/10.1186/s12943-022-01682-x
|