[1]
|
Mbuh, T.P., Ane-Anyangwe, I., Adeline, W., et al. (2019) Bacteriologically Confirmed Extra Pulmonary Tuberculosis and Treatment Outcome of Patients Consulted and Treated under Program Conditions in the Littoral Region of Cameroon. BMC Pulmonary Medicine, 19, Article No. 17. https://doi.org/10.1186/s12890-018-0770-x
|
[2]
|
Mathiasen, V.D., Andersen, P.H., Johansen, I.S., et al. (2020) Clinical Features of Tuberculous Lymphadenitis in a Low-Incidence Country. International Journal of Infectious Diseases, 98, 366-371. https://doi.org/10.1016/j.ijid.2020.07.011
|
[3]
|
Suárez, I., Fünger, S.M., Kröger, S., et al. (2019) The Diagnosis and Treatment of Tuberculosis. Deutsches Ärzteblatt International, 116, 729-735.
|
[4]
|
Houben, R.M. and Dodd, P.J. (2016) The Global Burden of Latent Tuberculosis Infection: A Re-Estimation Using Mathematical Modelling. PLOS Medicine, 13, E1002152. https://doi.org/10.1371/journal.pmed.1002152
|
[5]
|
Bagcchi, S. (2023) WHO’s Global Tuberculosis Report 2022. The Lancet Microbe, 4, E20. https://doi.org/10.1016/S2666-5247(22)00359-7
|
[6]
|
Snow, K.J., Cruz, A.T., Seddon, J.A., et al. (2020) Adolescent Tuberculosis. The Lancet Child & Adolescent Health, 4, 68-79. https://doi.org/10.1016/S2352-4642(19)30337-2
|
[7]
|
Barrett, C., Budhiraja, A., Parashar, V., et al. (2021) The Landscape of Regulatory Noncoding RNAs in Ewing’s Sarcoma. Biomedicines, 9, Article 933. https://doi.org/10.3390/biomedicines9080933
|
[8]
|
Tsibulnikov, S., Fayzullina, D., Karlina, I., et al. (2023) Ewing Sarcoma Treatment: A Gene Therapy Approach. Cancer Gene Therapy, 30, 1066-1071. https://doi.org/10.1038/s41417-023-00615-0
|
[9]
|
Ferguson, J.L. and Turner, S.P. (2018) Bone Cancer: Diagnosis and Treatment Principles. American Family Physician, 98, 205-213.
|
[10]
|
Dupuy, M., Lamoureux, F., Mullard, M., et al. (2023) Ewing Sarcoma from Molecular Biology to the Clinic. Frontiers in Cell and Developmental Biology, 11, Article 1248753. https://doi.org/10.3389/fcell.2023.1248753
|
[11]
|
Li, M. and Chen, C. (2022) Epigenetic and Transcriptional Signaling in Ewing Sarcoma—Disease Etiology and Therapeutic Opportunities. Biomedicines, 10, Article 1325. https://doi.org/10.3390/biomedicines10061325
|
[12]
|
Morales, E., Olson, M., Iglesias, F., et al. (2020) Role of Immunotherapy in Ewing Sarcoma. Journal for Immunotherapy of Cancer, 8, E653. https://doi.org/10.1136/jitc-2020-000653
|
[13]
|
Li, M. and Chen, C. (2022) Regulation of Metastasis in Ewing Sarcoma. Cancers, 14, Article 4902. https://doi.org/10.3390/cancers14194902
|
[14]
|
Liao, D. and Johnson, R.S. (2007) Hypoxia: A Key Regulator of Angiogenesis in Cancer. Cancer and Metastasis Reviews, 26, 281-290. https://doi.org/10.1007/s10555-007-9066-y
|
[15]
|
Zeng, W., Wan, R., Zheng, Y., et al. (2011) Hypoxia, Stem Cells and Bone Tumor. Cancer Letters, 313, 129-136. https://doi.org/10.1016/j.canlet.2011.09.023
|
[16]
|
Forsythe, J.A., Jiang, B., Iyer, N.V., et al. (1996) Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613. https://doi.org/10.1128/MCB.16.9.4604
|
[17]
|
Krock, B.L., Skuli, N. and Simon, M.C. (2012) Hypoxia-Induced Angiogenesis: Good and Evil. Genes & Cancer, 2, 1117-1133. https://doi.org/10.1177/1947601911423654
|
[18]
|
Aryee, D.N., Niedan, S., Kauer, M., et al. (2010) Hypoxia Modulates EWS-FLI1 Transcriptional Signature and Enhances the Malignant Properties of Ewing’s Sarcoma Cells in Vitro. Cancer Research, 70, 4015-4023. https://doi.org/10.1158/0008-5472.CAN-09-4333
|
[19]
|
Zhang, D., Cui, G., Sun, C., et al. (2019) Hypoxia Promotes Osteosarcoma Cell Proliferation and Migration Through Enhancing Platelet-Derived Growth Factor-BB/Platelet-Derived Growth Factor Receptor-β Axis. Biochemical and Biophysical Research Communications, 512, 360-366. https://doi.org/10.1016/j.bbrc.2019.03.040
|
[20]
|
Zhang, B., Li, Y., Zhao, J., et al. (2018) Hypoxia-Inducible Factor-1 Promotes Cancer Progression Through Activating AKT/Cyclin D1 Signaling Pathway in Osteosarcoma. Biomedicine & Pharmacotherapy, 105, 1-9. https://doi.org/10.1016/j.biopha.2018.03.165
|
[21]
|
Shi, L., Eugenin, E.A. and Subbian, S. (2016) Immunometabolism in Tuberculosis. Frontiers in Immunology, 7, Article 150. https://doi.org/10.3389/fimmu.2016.00150
|
[22]
|
Sean, D. and Meltzer, P.S. (2007) GEOquery: A Bridge Between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23, 1846-1847. https://doi.org/10.1093/bioinformatics/btm254
|
[23]
|
Goll, J.B., Li, S., Edwards, J.L., et al. (2020) Transcriptomic and Metabolic Responses to a Live-Attenuated Francisella Tularensis Vaccine. Vaccines, 8, Article 412. https://doi.org/10.3390/vaccines8030412
|
[24]
|
Ibrahim, E.H., Kilany, M., Mostafa, O., et al. (2019) TH1/TH2 Chemokines/Cytokines Profile in Rats Treated with Tetanus Toxoid and Euphorbia Tirucalli. Saudi Journal of Biological Sciences, 26, 1716-1723. https://doi.org/10.1016/j.sjbs.2018.08.005
|
[25]
|
Jin, Y., Gao, H., Jorgensen, R., et al. (20200 Mechanisms of Wheat Allergenicity in Mice: Comparison of Adjuvant-Free vs. Alum-Adjuvant Models. International Journal of Molecular Sciences, 21, Article 3205. https://doi.org/10.3390/ijms21093205
|
[26]
|
Liu, G., Yuan, C., Ma, J., et al. (2021) Influence of Immune Microenvironment on Diagnosis and Prognosis of Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 11, Article 604784. https://doi.org/10.3389/fonc.2021.604784
|
[27]
|
Kucinski, I., Dinan, M., Kolahgar, G., et al. (2017) Chronic Activation of JNK JAK/STAT and Oxidative Stress Signalling Causes the Loser Cell Status. Nature Communications, 8, Article No. 136. https://doi.org/10.1038/s41467-017-00145-y
|
[28]
|
Iyer, A.K., Liu, J., Gallo, R.M., et al. (2015) STAT3 Promotes CD1d-Mediated Lipid Antigen Presentation by Regulating a Critical Gene in Glycosphingolipid Biosynthesis. Immunology, 146, 444-455. https://doi.org/10.1111/imm.12521
|
[29]
|
Santpere, G., Alcaraz-Sanabria, A., Corrales-Sanchez, V., Pandiella, A., Gyorffy, B. and Ocana, A. (2018) Transcriptome Evolution from Breast Epithelial Cells to Basal-Like Tumors. Oncotarget, 9, 453-463. https://doi.org/10.18632/oncotarget.23065
|
[30]
|
Wu, T., Wang, X., Li, J., Song, X., Wang, Y., Wang, Y., Zhang, L., Li, Z. and Tian, J. (2015) Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis. PLOS ONE, 10, E0131183. https://doi.org/10.1371/journal.pone.0131183
|
[31]
|
Chakraborty, G., Rangaswami, H., Jain, S. and Kundu, G.C. (2006) Hypoxia Regulates Cross-Talk Between Syk and Lck Leading to Breast Cancer Progression and Angiogenesis. Journal of Biological Chemistry, 281, 11322-11331. https://doi.org/10.1074/jbc.M512546200
|
[32]
|
Koster, A., Landgraf, S., Leipold, A., Sachse, R., Gebhart, E., Tulusan, A.H., Ronay, G., Schmidt, C. and Dingermann, T. (1991) Expression of Oncogenes in Human Breast Cancer Specimens. Anticancer Research, 11, 193-201.
|
[33]
|
Clarke, C.N., Lee, M.S., Wei, W., Manyam, G., Jiang, Z.Q., Lu, Y., Morris, J., Broom, B., Menter, D., Vilar-Sanchez E., et al. (2017) Proteomic Features of Colorectal Cancer Identify Tumor Subtypes Independent of Oncogenic Mutations and Independently Predict Relapse-Free Survival. Annals of Surgical Oncology, 24, 4051-4058. https://doi.org/10.1245/s10434-017-6054-5
|
[34]
|
Janikowska, G., Janikowski, T., Pyka-Pajak, A., Mazurek, U., Janikowski, M., Gonciarz, M. and Lorenc, Z. (2018) Potential Biomarkers for the Early Diagnosis of Colorectal Adenocarcinoma-Transcriptomic Analysis of Four Clinical Stages. Cancer Biomarkers, 22, 89-99. https://doi.org/10.3233/CBM-170984
|
[35]
|
Veillette, A., Foss, F.M., Sausville, E.A., Bolen, J.B. and Rosen, N. (1987) Expression of the Lck Tyrosine Kinase Gene in Human Colon Carcinoma and Other Non-Lymphoid Human Tumor Cell Lines. Oncogene Research, 1, 357-374.
|
[36]
|
Krystal, G.W., DeBerry, C.S., Linnekin, D. and Litz, J. (1998) Lck Associates with and Is Activated by Kit in a Small Cell Lung Cancer Cell Line: Inhibition of Scf-Mediated Growth by the Src Family Kinase Inhibitor PP1. Cancer Research, 58, 4660-4666.
|
[37]
|
Mahabeleshwar, G.H. and Kundu, G.C. (2003) Tyrosine Kinase P56lck Regulates Cell Motility and Nuclear Factor Kappab-Mediated Secretion of Urokinase Type Plasminogen Activator Through Tyrosine Phosphorylation of Ikappabalpha Following Hypoxia/Reoxygenation. Journal of Biological Chemistry, 278, 52598-52612. https://doi.org/10.1074/jbc.M308941200
|
[38]
|
Lindauer, M. and Dasatinib, H.A. (2014) Dasatinib. In: Martens, U.M., Ed., Small Molecules in Oncology, Springer, 27-65. https://doi.org/10.1007/978-3-642-54490-3_2
|
[39]
|
Sugihara, T., Werneburg, N.W., Hernandez, M.C., Yang, L., Kabashima, A., Hirsova, P., Yohanathan, L., Sosa, C., Truty, M.J., Vasmatzis, G., et al. (2018) Yap Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by Lck and Independent of Lats Activity. Molecular Cancer Research, 16, 1556-1567. https://doi.org/10.1158/1541-7786.MCR-18-0158
|
[40]
|
Pei, T., Li, Y., Wang, J., Wang, H., Liang, Y., Shi, H., Sun, B., Yin, D., Sun, J., Song, R., et al. (2015) Yap Is a Critical Oncogene in Human Cholangiocarcinoma. Oncotarget, 6, 17206-17220. https://doi.org/10.18632/oncotarget.4043
|
[41]
|
Saygin, C., Wiechert, A., Rao, V.S., Alluri, R., Connor, E., Thiagarajan, P.S., Hale, J.S., Li Y., Chumakova, A., Jarrar, A., et al. (2017) Cd55 Regulates Self-Renewal and Cisplatin Resistance in Endometrioid Tumors. Journal of Experimental Medicine, 214, 2715-2732. https://doi.org/10.1084/jem.20170438
|
[42]
|
Li, Z., Zheng, B., Qiu, X., et al. (2020) The Identification and Functional Analysis of CD8+PD-1+CD161+T Cells in Hepatocellular Carcinoma. NPJ Precision Oncology, 4, Article No. 28. https://doi.org/10.1038/s41698-020-00133-4
|
[43]
|
Pleshkan, V., Zinovyeva, M., Vinogradova, T. and Sverdlov, E. (2007) KLRB 1 Gene Expression Is Suppressed in Human Cancer Tissues. Molecular Genetics, Microbiology and Virology, 22, 137-141. https://doi.org/10.3103/S0891416807040015
|
[44]
|
Gentles, A.J., Newman, A.M., Liu, C.L., et al. (2015) The Prognostic Landscape of Genes and Infiltrating Immune Cells Across Human Cancers. Nature Medicine, 21, 938-945. https://doi.org/10.1038/nm.3909
|
[45]
|
Welters, M.J., Ma, W., Santegoets, S.J., et al. (2018) Intratumoral HPV16-Specific T Cells Constitute a Type I–Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oro-pharyngeal Cancer. Clinical Cancer Research, 24, 634-647. https://doi.org/10.1158/1078-0432.CCR-17-2140
|
[46]
|
Kesselring, R., Thiel, A., Pries, R. and Wollenberg, B. (2011) The Number of CD161 Positive Th17 Cells Are Decreased in Head and Neck Cancer Patients. Cellular Immunology, 269, 74-77. https://doi.org/10.1016/j.cellimm.2011.03.026
|
[47]
|
Ezzeldin, S., Osama, A., Anwar, A.M., et al. (2023) Detection of Early Prognostic Biomarkers for Metastasis of Ewing’s Sarcoma in Pediatric Patients. Life Sciences, 334, Article 122237. https://doi.org/10.1016/j.lfs.2023.122237
|
[48]
|
Girma, T., Tsegaye, A., Desta, K., et al. (2023) Phenotypic Characterization of Peripheral B Cells in Mycobacterium Tuberculosis Infection and Disease in Addis Ababa, Ethiopia. Tuberculosis, 140, Article 102329. https://doi.org/10.1016/j.tube.2023.102329
|
[49]
|
Flores-Gonzalez, J., Ramón-Luing, L.A., Romero-Tendilla, J., Urbán-Solano, A., Cruz-Lagunas, A. and Chavez-Galan, L. (2023) Latent Tuberculosis Patients Have an Increased Frequency of IFN-γ-Producing CD5+ B Cells, Which Respond Efficiently to Mycobacterial Proteins. Pathogens, 12, Article 818. https://doi.org/10.3390/pathogens12060818
|