Share This Article:

Quantum Field Theory of Graphene with Dynamical Partial Symmetry Breaking

Abstract Full-Text HTML Download Download as PDF (Size:848KB) PP. 984-994
DOI: 10.4236/jmp.2014.510100    3,222 Downloads   4,136 Views   Citations

ABSTRACT

The quantum field theory approach has been proposed for the description of graphene electronic properties. It generalizes massless Dirac fermion model and is based on the Dirac-Hartree-Fock self-consistent field approximation and assumption on antiferromagnetic ordering of graphene lattice. The developed approach allows asymmetric charged carriers in single layer graphene with partially degenerated Dirac cones.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Grushevskaya, H. and Krylov, G. (2014) Quantum Field Theory of Graphene with Dynamical Partial Symmetry Breaking. Journal of Modern Physics, 5, 984-994. doi: 10.4236/jmp.2014.510100.

References

[1] Grushevskaya, G.V., Komarov, L.I. and Gurskii, L.I. (1998) Physics of Solid State, 40, 1802-1805.
http://dx.doi.org/10.1134/1.1130660
[2] Gusynin, V.P., Sharapov, S.G. and Carbotte, J.P. (2007) International Journal of Modern Physics B, 21, 4611.
http://dx.doi.org/10.1142/S0217979207038022
[3] Peres, N.M.R. (2009) Journal of Physics: Condensed Matter, 21, 323201.
http://dx.doi.org/10.1088/0953-8984/21/32/323201
[4] Ziegler, K. (2007) Physical Review B, 75, 233407.
http://dx.doi.org/10.1103/PhysRevB.75.233407
[5] Ando, T., Zheng, Y. and Suzuura, H. (2002) Journal of the Physical Society of Japan, 71, 1318-1324.
http://dx.doi.org/10.1143/JPSJ.71.1318
[6] Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Science, 306, 666.
http://dx.doi.org/10.1143/JPSJ.71.1318
[7] Dean, C.R., Young, A.F. and Meric, I. (2010) Nature Nanotechnology, 5, 722.
http://dx.doi.org/10.1038/nnano.2010.172
[8] Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L. and Kim, P. (2008) Physical Review Letters, 101, 096802.
http://dx.doi.org/10.1103/PhysRevLett.101.096802
[9] Du, X., Skachko, I., Barker, A. and Andrei, E.Y. (2008) Nature Nanotechnology, 3, 491-495.
http://dx.doi.org/10.1038/nnano.2008.199
[10] Geim, A.K. and Novoselov, K.S. (2007) Nature Materials, 6, 183.
http://dx.doi.org/10.1038/nmat1849
[11] Castro, E.V., Ochoa, H., Katsnelson, M.I., Gorbachev, R.V., Elias, D.C., Novoselov, K.S., Geim, A.K. and Guinea, F. (2010) Physical Review Letters, 105, 266601.
http://dx.doi.org/10.1103/PhysRevLett.105.266601
[12] Hancock, Y. (2011) Journal of Physics D, 44, 473001.
http://dx.doi.org/10.1088/0022-3727/44/47/473001
[13] Kibis, O.V. (2011) Physical Review Letters, 107, 106802.
http://dx.doi.org/10.1103/PhysRevLett.107.106802
[14] Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorieva, I.V., Novoselov, K.S., Guinea, F. and Geim, A.K. (2012) Nature Physics, 8, 172.
http://dx.doi.org/10.1038/nphys2213
[15] Rojas-Cuervo, A.M. and Rey-González, R.R. (2013) Asymmetric Dirac Cones in Monatomic Hexagonal Lattices. ArXiv:1304.4576v1 [cond-mat.mes-hall]
[16] Wang, J.R. and Liu, G.Z. (2011) Journal of Physics: Condensed Matter, 23, 155602.
http://dx.doi.org/10.1088/0953-8984/23/15/155602
[17] Semenoff, G.W. (1984) Physical Review Letters, 53, 2449.
http://dx.doi.org/10.1103/PhysRevLett.53.2449
[18] Wallace, P.R. (1947) Physical Review, 71, 622-634.
http://dx.doi.org/10.1103/PhysRev.71.622
[19] Reich, S., Maultzsch, J., Thomsen, C. and Ordejón, P. (2002) Physical Review B, 66, 035412.
http://dx.doi.org/10.1103/PhysRevB.66.035412
[20] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Nature, 438, 197-200.
http://dx.doi.org/10.1038/nature04233
[21] Fialkovsky, I. and Vassilevich, D.V. (2012) European Physical Journal B, 85, 384.
http://dx.doi.org/10.1140/epjb/e2012-30685-9
[22] Falkovsky, L.A. (2011) Low Temperature Physics, 37, 480-484.
http://dx.doi.org/10.1063/1.3615524
[23] Falkovsky, L.A. and Varlamov, A.A. (2007) European Physical Journal B, 56, 281-284.
http://dx.doi.org/10.1140/epjb/e2007-00142-3
[24] Falkovsky, L.A. (2008) Physics—Uspekhi, 51, 887-897.
http://dx.doi.org/10.1070/PU2008v051n09ABEH006625
[25] Gribov, V.N. (2001) Quantum Electrodynamics. Regular and Chaotic Dynamics Publisher, Izhevsk.
[26] Kaku, M. (1994) Quantum Field Theory: A Modern Introduction. Oxford University Press, Oxford.
[27] Abrikosov, A.A. (1998) Physical Review B, 58, 2788.
http://dx.doi.org/10.1103/PhysRevB.58.2788
[28] Katsnelson, M.I. (2006) European Physical Journal B, 51, 157-160.
http://dx.doi.org/10.1140/epjb/e2006-00203-1
[29] Kane, C.L. and Mele, E.J. (2005) Physical Review Letters, 95, 226801.
http://dx.doi.org/10.1103/PhysRevLett.95.226801
[30] Huertas-Hernando, D., Guinea, F. and Brataas, A. (2006) Physical Review B, 74, 155426.
http://dx.doi.org/10.1103/PhysRevB.74.155426
[31] Min, H., Hill, J.E., Sinitsyn, N.A., Sahu, B.R., Kleinman, L. and MacDonald, A.H. (2006) Physical Review B, 74, 165310.
http://dx.doi.org/10.1103/PhysRevB.74.165310
[32] Han, W., McCreary, K., Bao, W., Li, Y., Miao, F., Lau, C.N. and Kawakami, R.K. (2009) Physical Review Letters, 102, 137205.
http://dx.doi.org/10.1103/PhysRevLett.102.137205
[33] Han, W., McCreary, K., Pi, K., Wang, W.H., Li, Y., Wen, H., Chen, J.R. and Kawakami, R.K. (2012) Journal of Magnetism and Magnetic Materials, 324, 369-381.
http://dx.doi.org/10.1016/j.jmmm.2011.08.001
[34] Pesin, D. and MacDonald, A.H. (2012) Nature Materials, 11, 409-416.
http://dx.doi.org/10.1038/nmat3305
[35] Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorieva, I.V., Novoselov, K.S., Guinea, F. and Geim, A.K. (2011) Nature Physics, 7, 701-704.
http://dx.doi.org/10.1038/nphys2049
[36] Ferreira, A., Rappoport, T.G., Cazalilla, M.A. and Neto, A.H.C. (2014) Physical Review Letters, 112, 066601.
http://dx.doi.org/10.1103/PhysRevLett.112.066601
[37] Neto, A.H.C., Guinea, F., Peres, N.M., Novoselov, K.S. and Geim, A.K. (2009) Reviews of Modern Physics, 81, 109-162.
http://dx.doi.org/10.1103/RevModPhys.81.109
[38] Dirac, P.A.M. (1966) Lectures on Quantum Field Theory. Belfer Graduate School of Science, New York.
[39] Grushevskaya, H.V. and Krylov, G.G. (2013) Int. J. Nonlin. Phen. in Comp. Sys., 16, 189-208.
[40] Rahman, A., Guikema, J.W. and Markovic, N. (2013) Asymmetric Scattering of Dirac Electrons and Holes in Graphene. arXiv:1304.6318v1 [cond-mat.mes-hall]
[41] Rahman, A., Guikema, J.W. and Markovic, N. (2013) Direct Evidence of Angle-Selective Transmission of Dirac Electrons in Graphene p-n Junctions. arXiv:1304.5533v1 [cond-mat.mes-hall]
[42] Rossi, E., Bardarson, J.H., Fuhrer, M.S. and Das, S.S. (2012) Physical Review Letters, 109, 096801.
http://dx.doi.org/10.1103/PhysRevLett.109.096801
[43] Grushevskaya, H.V. and Krylov, G.G. (2014) Int. J. Nonlin. Phen. in Comp. Sys., 17, 86-96.
[44] Grushevskaya, H.V. and Krylov, G.G. (2013) Electronic Structure and Transport in Graphene: Quasi-Relativistic Dirac-Hartree-Fock Self-Consistent Field Approximation. arXiv:1309.1847 [cond-mat.mes-hall]
[45] Krylov, G.G., Krylova, H.V. and Belov, M.A. (2011) Electron Transport in Low-Dimensional Systems with Nontrivial Topology: Effects of Localization. In: Mokshin, A.V., et al., Eds., Dynamical Phenomena in Complex Systems, MOiN RT Publishing, Kazan, 161-180. (in Russian)
[46] Krylova, H. and Hursky, L. (2013) Spin Polarization in Strong-Correlated Nanosystems. LAP LAMBERT Academic Publishing, Saarbrucken.
[47] Messiah, A. (2000) Quantum Mechanics, Vol. 1. Dover Publications, Mineola.
[48] Morozov, S.V., Novoselov, K.S. and Geim, A.K. (2008) Physics—Uspekhi, 178, 776.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.