Intracellular Cholesterol Retention—New Target for Direct Anti-Atherosclerotic Therapy

Abstract

Accumulation of cholesterol in arterial cells, intracellular cholesterol retention, may be responsible for all major manifestations of atherosclerosis on a cellular level. Previously we have shown that intracellular cholesterol retention is the principal event in the genesis of atherosclerotic lesions. This allows us to consider cellular retention of cholesterol as a novel target for anti-atherosclerotic therapy. In this case the target is not the level of blood cholesterol but the level of cholesterol in vascular cells. This review describes our approach based on the use of cultured human arterial cells for the development of direct anti-atherosclerotic therapy. We use natural products as the basis of promising drugs for anti-atherosclerotic therapy. Using natural products, we have developed an approach to prevent intracellular cholesterol retention in cultured cells. Our knowledge of the mechanisms of atherosclerosis is the foundation on which we have developed drugs that have a direct anti-atherosclerotic effect, namely Allicor on the basis of garlic powder, anti-inflammatory drug Inflaminat (calendula, elder, and violet) possessing anti-cytokine activity and phytoestrogen-rich drug Karinat (garlic powder, extract of grape seeds, green tea leaves, hop cones, β-carotene, α-tocopherol, and ascorbic acid). Treatment with allicor or inflaminat has a direct anti-atherosclerotic effect on carotid atherosclerosis in asymptomatic men. Karinat prevents the development of carotid atherosclerosis in postmenopausal women. Thus, the main findings of our basic research have been successfully translated into clinical practice. As a result, this translation, a novel approach to the development of anti-atherosclerotic therapy, has been established. Our clinical trials have confirmed the suitability of innovative approach and the efficacy of novel drugs developed on the basis our methodology.

Share and Cite:

Orekhov, A. (2013) Intracellular Cholesterol Retention—New Target for Direct Anti-Atherosclerotic Therapy. Open Journal of Endocrine and Metabolic Diseases, 3, 9-17. doi: 10.4236/ojemd.2013.34A1002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. S. Martin, R. S. Blumenthal and M. Miller, “LDL Cholesterol: The Lower the Better,” The Medical Clinics of North America, Vol. 96, No. 1, 2012, pp. 13-26. doi:10.1016/j.mcna.2012.01.009
[2] F. Sala, A. L. Catapano and G. D. Norata, “High Density Lipoproteins and Atherosclerosis: Emerging Aspects,” Journal of Geriatric Cardiology, Vol. 9, No. 4, 2012, pp. 401-407. doi:10.3724/SP.J.1263.2011.12282
[3] E. A. Fisher, J. E. Feig, B. Hewing, S. L. Hazen and J. D. Smith, “High-Density Lipoprotein Function, Dysfunction, and Reverse Cholesterol Transport,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 32, No. 12, 2012, pp. 2813-2820. doi:10.1161/ATVBAHA.112.300133
[4] A. N. Orekhov, V. V. Tertov, S. A. Kudryashov and V. N. Smirnov, “Triggerlike Stimulation of Cholesterol Accumulation and DNA and Extracellular Matrix Synthesis Induced by Atherogenic Serum or Low Density Lipoprotein in Cultured Cells,” Circulation Research, Vol. 66, No. 2, 1990, pp. 311-320. doi:10.1161/01.RES.66.2.311
[5] A. N. Orekhov, V. V. Tertov, S. N. Pokrovsky, I. Yu. Adamova, O. N. Martsenyuk, A. A. Lyakishev and V. N. Smirnov, “Blood Serum Atherogenicity Associated with Coronary Atherosclerosis. Evidence for Nonlipid Factor Providing Atherogenicity of Low-Density Lipoproteins and an Approach to Its Elimination,” Circulation Research, Vol. 62, No. 3, 1988, pp. 421-429. doi:10.1161/01.RES.62.3.421
[6] H. S. Kruth, “Receptor-Independent Fluid-Phase Pinocytosis Mechanisms for Induction of Foam Cell Formation with Native Low-Density Lipoprotein Particles,” Current Opinion in Lipidology, Vol. 22, No. 5, 2011, pp. 386-393. doi:10.1097/MOL.0b013e32834adadb
[7] Y. Yuan, P. Li and J. Ye, “Lipid Homeostasis and the Formation of Macrophage-Derived Foam Cells in Atherosclerosis,” Protein & Cell, Vol. 3, No. 3, 2012, pp. 173-181. doi:10.1007/s13238-012-2025-6
[8] A. N. Orekhov, V. V. Tertov, D. N. Mukhin and I. A. Mikhailenko, “Modification of Low Density Lipoprotein by Desialylation Causes Lipid Accumulation in Cultured Cells. Discovery of Desialylated Lipoprotein with Altered Cellular Metabolism in the Blood of Atherosclerotic Patients,” Biochemical and Biophysical Research Communications, Vol. 162, No. 1, 1989, pp. 206-211. doi:10.1016/0006-291X(89)91982-7
[9] A. N. Orekhov, V. V. Tertov and D. N. Mukhin, “Desialylated Low Density Lipoprotein—Naturally Occurring Modified Lipoprotein with Atherogenic Potency,” Atherosclerosis, Vol. 86, No. 2-3, 1991, pp. 153-161. doi:10.1016/0021-9150(91)90211-K
[10] V. V. Tertov, I. A. Sobenin, Z. A. Gabbasov, E. G. Popov and A. N. Orekhov, “Lipoprotein Aggregation as an Essential Condition of Intracellular Lipid Accumulation Caused by Modified Low Density Lipoproteins,” Biochemical and Biophysical Research Communications, Vol. 163, No. 1, 1989, pp. 489-494. doi:10.1016/0006-291X(89)92163-3
[11] V. V. Tertov, I. A. Sobenin, A. G. Tonevitsky, A. N. Orekhov and V. N. Smirnov, “Isolation of Atherogenic Modified (Desialylated) Low Density Lipoprotein from Blood of Atherosclerotic Patients: Separation from Native Lipoprotein by Affinity Chromatography,” Biochemical and Biophysical Research Communications, Vol. 167, No. 3, 1990, pp. 1122-1127. doi:10.1016/0006-291X(90)90639-5
[12] V. V. Tertov, I. A. Sobenin, A. N. Orekhov, O. Jaakkola, T. Solakivi and T. Nikkari, “Characteristics of Low Density Lipoprotein Isolated from Circulating Immune Complexes,” Atherosclerosis, Vol. 122, No. 2, 1996, pp. 191-199. doi:10.1016/0021-9150(95)05737-4
[13] V. V. Tertov, V. V. Kaplun, I. A. Sobenin, E. Y. Boytsova, N. V. Bovin and A. N. Orekhov, “Human Plasma Trans-Sialidase Causes Atherogenic Modification of Low Density Lipoprotein,” Atherosclerosis, Vol. 159, No. 1, 2001, pp. 103-115. doi:10.1016/S0021-9150(01)00498-1
[14] P. Avogaro, G. Bittolo-Bon and G. Cazzolato, “Presence of a Modified Low Density Lipoprotein in Humans,” Arteriosclerosis, Vol. 8, No. 6, 1988, pp. 79-87. doi:10.1161/01.ATV.8.1.79
[15] R. M. Krauss and D. J. Burke, “Identification of Multiple Subclasses of Plasma Low Density Lipoproteins in Normal Humans,” Journal of Lipid Research, Vol. 23, No. 1, 1982, pp. 97-104.
[16] V. V. Tertov, G. Bittolo-Bon, I. A. Sobenin, G. Cazzolato, A. N. Orekhov and P. Avogaro, “Naturally Occurring Modified Low Density Lipoproteins are Similar if Not Identical: More Electronegative and Desialylated Lipoprotein Subfractions,” Experimental and Molecular Pathology, Vol. 62, No. 3, 1995, pp. 166-172. doi:10.1006/exmp.1995.1018
[17] V. V. Tertov, I. A. Sobenin and A. N. Orekhov, “Similarity between Naturally Occurring Modified Desialylated, Electronegative and Aortic Low Density Lipoprotein,” Free Radical Research, Vol. 25, No. 4, 1996, pp. 313-319. doi:10.3109/10715769609149054
[18] M. La Belle and R. M. Krauss, “Differences in Carbohydrate Content of Low Density Lipoproteins Associated with Low Density Lipoprotein Subclass Patterns,” Journal of Lipid Research, Vol. 31, No. 9, 1990, pp. 1577-1588.
[19] J. K. Kirk, S. W. Davis, C. A. Hildebrandt, E. N. Strachan, M. L. Peechara and R. Lord, “Characteristics Associated with Glycemic Control among Family Medicine Patients with Type 2 Diabetes,” North Carolina Medical Journal, Vol. 72, No. 5, 2011, pp. 345-350.
[20] H. Soran and P. N. Durrington, “Susceptibility of LDL and Its Subfractions to Glycation,” Current Opinion in Lipidology, Vol. 22, No. 4, 2011, pp. 254-261. doi:10.1097/MOL.0b013e328348a43f
[21] X. Jiang, Z. Yang, A. N. Chandrakala, D. Pressley and S. Parthasarathy, “Oxidized Low Density Lipoproteins—Do We Know Enough about Them?” Cardiovascular Drugs and Therapy, Vol. 25, No. 5, 2011, pp. 367-377. doi:10.1007/s10557-011-6326-4
[22] A. N. Orekhov, V. V. Tertov, A. E. Kabakov, I. Yu. Adamova, S. N. Pokrovsky and V. N. Smirnov, “Autoantibodies against Modified Low Density Lipoprotein. Nonlipid Factor of Blood Plasma that Stimulates Foam Cell Formation,” Arteriosclerosis and Thrombosis, Vol. 11, No. 2, 1991, pp. 316-326. doi:10.1161/01.ATV.11.2.316
[23] A. N. Orekhov and V. V. Tertov, “Atherogenicity of Autoantibodies against Low Density Lipoprotein,” Agents and Actions, Vol. 32, 1991, No. 1-2, pp. 128-129. doi:10.1007/BF01983338
[24] M. F. Lopes-Virella and G. Virella, “Clinical Significance of the Humoral Immune Response to Modified LDL,” Clinical Immunology, Vol. 134, No. 1, 2010, pp. 55-65. doi:10.1016/j.clim.2009.04.001
[25] V. V. Tertov, A. N. Orekhov, Kh. S. Sayadyan, S. G. Serebrennikov, A. G. Kacharava, A. A. Lyakishev and V. N. Smirnov, “Correlation between Cholesterol Content in Circulating Immune Complexes and Atherogenic Properties of CHD Patients’ Serum Manifested in Cell Culture,” Atherosclerosis, Vol. 81, No. 3, 1990, pp. 183-189. doi:10.1016/0021-9150(90)90065-Q
[26] A. G. Kacharava, V. V. Tertov and A. N. Orekhov, “Auto-Antibodies against Low-Density Lipoprotein and Atherogenic Potential of Blood,” Annals of Medicine, Vol. 25, No. 6, 1993, pp. 551-555.
[27] V. V. Tertov, A. N. Orekhov, A. G. Kacharava, I. A. Sobenin, N. V. Perova and V. N. Smirnov, “Low Density Lipoprotein-Containing Circulating Immune Complexes and Coronary Atherosclerosis,” Experimental and Molecular Pathology, Vol. 52, No. 3, 1990, pp. 300-308. doi:10.1016/0014-4800(90)90071-K
[28] A. N. Orekhov, O. S. Kalenich, V. V. Tertov and I. D. Novikov, “Lipoprotein Immune Complexes as Markers of Atherosclerosis,” International Journal of Tissue Reactions, Vol. 13, No. 5, 1991, pp. 233-236.
[29] A. N. Orekhov, O. S. Kalenich, V. V. Tertov, N. V. Perova, Iy. D. Novikov, A. A. Lyakishev, A. D. Deev and M. Ya. Ruda, “Diagnostic Value of Immune Cholesterol as a Marker for Atherosclerosis,” Journal of Cardiovascular Risk, Vol. 2, No. 5, 1995, pp. 459-466. doi:10.1097/00043798-199510000-00011
[30] I. A. Sobenin, V. P. Karagodin, A. A. Melnichenko, Y. V. Bobryshev and A. N. Orekhov, “Diagnostic and Prognostic Value of Low Density Lipoprotein-Containing Circulating Immune Complexes in Atherosclerosis,” Journal of Clinical Immunology, Vol. 33, No. 2, 2013, pp. 489-495. doi:10.1007/s10875-012-9819-4
[31] I. A. Sobenin, V. A. Orekhova, A. Melnichenko, Y. V. Bobryshev and A. N. Orekhov, “Low Density Lipoprotein-Containing Circulating Immune Complexes Have Better Prognostic Value in Carotid Intima-Media Thickness Progression than Other Lipid Parameters,” International Journal of Cardiology, Vol. 166, No. 3, 2012, pp. 747-748. doi:10.1016/j.ijcard.2012.09.175
[32] A. N. Orekhov, V. V. Tertov, D. N. Mukhin, V. E. Koteliansky, M. A. Glukhova, M. G. Frid, G. K. Sukhova, K. A. Khashimov and V. N. Smirnov, “Insolubilization of Low Density Lipoprotein Induces Cholesterol Accumulation in Cultured Subendothelial Cells of Human Aorta,” Atherosclerosis, Vol. 79, No. 1, 1989, pp. 59-70. doi:10.1016/0021-9150(89)90034-8
[33] M. A. Glukhova, A. E. Kabakov, M. G. Frid, O. I. Ornatsky, A. M. Belkin, D. N. Mukhin, A. N. Orekhov, V. E. Koteliansky and V. N. Smirnov, “Modulation of Human Aorta Smooth Muscle Cell Phenotype: a Study of Muscle-Specific Variants of Vinculin, Caldesmon, and Actin Expression,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 85, No. 24, 1988, pp. 9542-9546. doi:10.1073/pnas.85.24.9542
[34] A. N. Orekhov, V. V. Tertov, D. N. Mukhin, V. E. Koteliansky, M. A. Glukhova, K. A. Khashimov and V. N. Smirnov, “Association of Low-Density Lipoprotein with Particulate Connective Tissue Matrix Components Enhances Cholesterol Accumulation in Cultured Subendothelial Cells of Human Aorta,” Biochimica et Biophysica Acta, Vol. 928, No. 3, 1987, pp. 251-258. doi:10.1016/0167-4889(87)90183-2
[35] A. A. Melnichenko, D. V. Aksenov, V. A. Myasoedova, O. M. Panasenko, A. A. Yaroslavov, I. A. Sobenin, Y. V. Bobryshev and A. N. Orekhov, “Pluronic Block Copolymers Inhibit Low Density Lipoprotein Self-Association,” Lipids, Vol. 47, No. 10, 2012, pp. 995-1000. doi:10.1007/s11745-012-3699-5
[36] V. V. Tertov, A. N. Orekhov, I. A. Sobenin, Z. A. Gabbasov, E. G. Popov, A. A. Yaroslavov and V. N. Smirnov, “Three Types of Naturally Occurring Modified Lipoproteins Induce Intracellular Lipid Accumulation Due to Lipoprotein Aggregation,” Circulation Research, Vol. 71, No. 1, 1992, pp. 218-228. doi:10.1161/01.RES.71.1.218
[37] D. V. Aksenov, L. A. Medvedeva, T. A. Skalbe, I. A. Sobenin, V. V. Tertov, Z. A. Gabbasov, E. V. Popov and A. N. Orekhov, “Deglycosylation of Apo B-Containing Lipoproteins Increase Their Ability to Aggregate and to Promote Intracellular Cholesterol Accumulation in Vitro,” Archives of Physiology and Biochemistry, Vol. 114, No. 5, 2008, pp. 349-356. doi:10.1080/13813450802227915
[38] M. D. Rekhter, E. R. Andreeva, A. A. Mironov and A. N. Orekhov, “Three-Dimensional Cytoarchitecture of Nomal and Atherosclerotic Intima of Human Aorta,” American Journal of Pathology, Vol. 138, No. 3, 1991, pp. 569-580.
[39] A. N. Orekhov, E. R. Andreeva, A. V. Krushinsky and V. N. Smirnov, “Primary Cultures of Enzyme-Isolated Cells from Normal and Atherosclerotic Human Aorta,” Medical Biology, Vol. 62, No. 4, 1984, pp. 255-259.
[40] A. N. Orekhov, V. V. Tertov, I. D. Novikov, A. V. Krushinsky, E. R. Andreeva, V. Z. Lankin and V. N. Smirnov, “Lipids in Cells of Atherosclerotic and Uninvolved Human Aorta. I. Lipid Composition of Aortic Tissue and Enzyme Isolated and Cultured Cells,” Experimental and Molecular Pathology, Vol. 42, No. 1, 1985, pp. 117-137. doi:10.1016/0014-4800(85)90022-X
[41] A. N Orekhov, A. V. Krushinsky, E. R. Andreeva, V. S. Repin and V. N. Smirnov, “Adult Human Aortic Cells in Primary Culture: Heterogeneity in Shape,” Heart and Vessels, Vol. 2, No. 4, 1986, pp. 193-201. doi:10.1007/BF02059968
[42] S. Yamada, X. Guo, M. Yoshizawa, Z. Li, A. Matsuyama, H. Hashimoto and Y. Sasaguri, “Primary Desmoplastic Cutaneous Leiomyosarcoma Associated with High MIB-1 Labeling Index: A Teaching Case Giving Rise to Diagnostic Difficulties on a Small Biopsy Specimen,” Pathology, Research and Practice, Vol. 207, No. 11, 2011, pp. 728-732. doi:10.1016/j.prp.2011.08.008
[43] A. N. Orekhov, V. A. Kosykh, V. S. Repin and V. N. Smirnov, “Cell Proliferation in Normal and Atherosclerotic Human Aorta. II. Autoradiographic Observation on Deoxyribonucleic Acid Synthesis in Primary Cell Culture,” Laboratory Investigation, Vol. 48, No. 6, 1983, pp. 749-754.
[44] A. N. Orekhov, V. V. Tertov, S. A. Kudryashov, Kh. A. Khashimov and V. N. Smirnov, “Primary Culture of Human Aortic Intima Cells as a Model for Testing Anti-Atherosclerotic Drugs. Effects of Cyclic AMP, Prostaglandins, Calcium Antagonists, Antioxidants, and Lipid-Lowering Agents,” Atherosclerosis, Vol. 60, No. 2, 1986, pp. 101-110. doi:10.1016/0021-9150(86)90002-X
[45] H. R. Li, V. V. Tertov, A. V. Vasil’ev, V. A. Tutel’yan and A. N. Orekhov, “Anti-Atherogenic and Anti-Atherosclerotic Effects of Mushroom Extracts Revealed in Human Aortic Intima Cell Culture,” Drug Development Research, Vol. 17, No. 1, 1989, pp. 109-117. doi:10.1002/ddr.430170203
[46] A. N. Orekhov, “Direct Anti-Atherosclerotic Therapy; Development of Natural Anti-Atherosclerotic Drugs Preventing Cellular Cholesterol Retention,” Current Pharmaceutical Design, 2013.
[47] A. N. Orekhov and V. V. Tertov, “In Vitro Effect of Garlic Powder Extract on Lipid Content in Normal and Atherosclerotic Human Aortic Cells,” Lipids, Vol. 32, No. 10, 1997, pp. 1055-1060. doi:10.1007/s11745-997-0136-7
[48] A. N. Orekhov and J. Grünwald, “Effects of Garlic on Atherosclerosis,” Nutrition, Vol. 13, No. 7-8, 1997, pp. 656-663. doi:10.1016/S0899-9007(97)83010-9
[49] A. N. Orekhov, I. A. Sobenin, N. V. Korneev, T. V. Kirichenko, V. A. Myasoedova, A. A. Melnichenko, M. Balcells, E. R. Edelman and Y. V. Bobryshev, “Anti-Atherosclerotic Therapy Based on Botanicals,” Recent Patents on Cardiovascular Drug Discovery, Vol. 8, No. 1, 2013, pp. 56-66.
[50] J. Koscielny, D. Klüssendorf, R. Latza, R. Schmitt, H. Radtke, G. Siegel and H. Kiesewetter, “The Antiatherosclerotic Effect of Allium sativum,” Atherosclerosis, Vol. 144, No. 1, 1999, pp. 237-249. doi:10.1016/S0021-9150(99)00060-X
[51] J. R. Crouse 3rd, R. P. Byington, M. G. Bond, M. A. Espeland, T. E. Craven, J. W. Sprinkle, M. E. McGovern and C. D. Furberg, “Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II),” American Journal of Cardiology, Vol. 75, No. 7, 1995, pp. 455-459. doi:10.1016/S0002-9149(99)80580-3
[52] R. Salonen, K. Nyyssonen, E. Porkkala, J. Rummukainen, R. Belder, J. S. Park and J. T. Salonen, “Kuopio Atherosclerosis Prevention Study (KAPS). A Population-Based Primary Preventive Trial of the Effect of LDL Lowering on Atherosclerotic Progression in Carotid and Femoral Arteries,” Circulation, Vol. 92, No. 7, 1995, pp. 1758-1764. doi:10.1161/01.CIR.92.7.1758
[53] T. J. Smilde, S. van Wissen, H. Wollersheim, M. D. Trip, J. J. Kastelein and A. F. Stalenhoef, “Effect of Aggressive versus Conventional Lipid Lowering on Atherosclerosis Progression in Familial Hypercholesterolaemia (ASAP): A Prospective, Randomised, Double-Blind Trial,” Lancet, Vol. 357, No. 9256, 2001, pp. 577-581. doi:10.1016/S0140-6736(00)04053-8
[54] B. Pitt, R. P. Byington, C. D. Furberg, D. B. Hunninghake, G. B. Mancini, M. E. Miller and W. Riley, “Effect of Amlodipine on the Progression of Atherosclerosis and the Occurrence of Clinical Events. PREVENT Investigators,” Circulation, Vol. 102, No. 13, 2000, pp. 1503-1510. doi:10.1161/01.CIR.102.13.1503
[55] D. H. Blankenhorn, R. H. Selzer, D. W. Crawford, J. D. Barth, C. R. Liu, C. H. Liu, W. J. Mack and P. Alaupovic, “Beneficial Effects of Colestipol-Niacin Therapy on the Common Carotid Artery. Two- and Four-Year Reduction of Intima-Media Thickness Measured by Ultrasound,” Circulation, Vol. 88, No. 1, 1993, pp. 20-28. doi:10.1161/01.CIR.88.1.20
[56] H. N. Hodis, “Reversibility of Atherosclerosis—Evolving Perspectives from Two Arterial Imaging Clinical Trials: The Cholesterol Lowering Atherosclerosis Regression Study and the Monitored Atherosclerosis Regression Study,” Journal of Cardiovascular Pharmacology, Vol. 25, Suppl. 4, 1995, pp. S25-S31.
[57] D. H. Blankenhorn, S. P. Azen, D. M. Kramsch, W. J. Mack, L. Cashin-Hemphill, H. N. Hodis, L. W. DeBoer, P. R. Mahrer, M. J. Masteller, L. I. Vailas, P. Alaupovic, and L. J. Hirsch, “Coronary Angiographic Changes with Lovastatin Therapy. The Monitored Atherosclerosis Regression Study (MARS). The MARS Research Group,” Annals of Internal Medicine, Vol. 119, No. 10, 1993, pp. 969-976. doi:10.7326/0003-4819-119-10-199311150-00002
[58] A. Zanchetti, E. A. Rosei, C. Dal Palù, G. Leonetti, B. Magnani and A. Pessina, “The Verapamil in Hypertension and Atherosclerosis Study (VHAS): Results of Long-Term Randomized Treatment with Either Verapamil or Chlorthalidone on Carotid Intima-Media Thickness,” Journal of Hypertension, Vol. 16, No. 11, 1998, pp. 1667-1676. doi:10.1097/00004872-199816110-00014
[59] P. Libby, “Inflammation and Cardiovascular Disease Mechanisms,” The American Journal of Clinical Nutrition, Vol. 83, No. 2, 2006, pp. 456S-460S.
[60] G. Aidinian, J. M. Weiswasser and S. Arora, “Carotid Plaque Morphologic Characteristics,” Perspectives in Vascular Surgery and Endovascular Therapy, Vol. 18, No. 1, 2006, pp. 63-70. doi:10.1177/153100350601800124
[61] A. Daugherty, N. R. Webb, D. L. Rateri and V. L. King, “The Immune System and Atherogenesis. Cytokine Regulation of Macrophage Functions in Atherogenesis,” Journal of Lipid Research, Vol. 46, No. 9, 2005, pp. 1812-1822. doi:10.1194/jlr.R500009-JLR200
[62] H. G. Burger, A. H. Maclennan, K. E. Huang and C. Castelo-Branco, “Evidence-Based Assessment of the Impact of the WHI on Women’s Health,” Climacteric, Vol. 15, No. 3, 2012, pp. 281-287. doi:10.3109/13697137.2012.655564
[63] T. J. de Villiers and J. C. Stevenson, “The WHI: The Effect of Hormone Replacement Therapy on Fracture Prevention,” Climacteric, Vol. 15, No. 3, 2012, pp. 263-266. doi:10.3109/13697137.2012.659975
[64] M. J. Ellis, V. J. Suman, J. Hoog, L. Lin, J. Snider, A. Prat, J. S. Parker, J. Luo, K. DeSchryver, D. C. Allred, L. J. Esserman, G. W. Unzeitig, J. Margenthaler, G. V. Babiera, P. K. Marcom, J. M. Guenther, M. A. Watson, M. Leitch, K. Hunt and J. A. Olson, “Randomized Phase II Neoadjuvant Comparison between Letrozole, Anastrozole, and Exemestane for Postmenopausal Women with Estrogen Receptor-Rich Stage 2 to 3 Breast Cancer: Clinical and Biomarker Outcomes and Predictive Value of the Baseline PAM50-Based Intrinsic Subtype—ACOSOG Z1031,” Journal of Clinical Oncology, Vol. 29, No. 17, 2011, pp. 2342-2349. doi:10.1200/JCO.2010.31.6950
[65] N. L. Smith, J. R. Wiley, C. Legault, K. M. Rice, S. R. Heckbert, B. M. Psaty, R. P. Tracy and M. Cushman, “Effect of Progestogen and Progestogen Type on Hemostasis Measures in Postmenopausal Women: The Post-Menopausal Estrogen/Progestin Intervention (PEPI) Study,” Menopause, Vol. 15, No. 6, 2008, pp. 1145-1150. doi:10.1097/gme.0b013e3181775eca
[66] D. E. Masood, E. C. Roach, K. G. Beauregard and R. A. Khalil, “Impact of Sex Hormone Metabolism on the Vascular Effects of Menopausal Hormone Therapy in Cardiovascular Disease,” Current Drug Metabolism, Vol. 11, No. 8, 2010, pp. 693-714. doi:10.2174/138920010794233477
[67] C. N. Pellegrini, E. Vittinghoff, F. Lin, S. B. Hulley and G. M. Marcus, “Statin Use is Associated with Lower Risk of Atrial Fibrillation in Women with Coronary Disease: The HERS Trial,” Heart, Vol. 95, No. 9, 2009, pp. 704-708. doi:10.1136/hrt.2008.154054
[68] M. Slevin, N. Ahmed, Q. Wang, G. McDowell and L. Badimon, “Unique Vascular Protective Properties of Natural Products: Supplements or Future Main-Line Drugs with Significant Anti-Atherosclerotic Potential?” Vascular Cell, Vol. 4, No. 1, 2012, p. 9. doi:10.1186/2045-824X-4-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.