Synthesis of Cobalt Nano Crystals in Aqueous Media and Its Characterization
Pamela Alex, Sanjib Majumdar, Jugal Kishor, Inderkumar G. Sharma
.
DOI: 10.4236/msa.2011.29177   PDF    HTML     7,379 Downloads   12,782 Views   Citations

Abstract

The work demonstrates the production of nano crystals of cobalt in bulk quantities in aqueous medium using hydrazine as the reducing agent. Preparation of Co nano powders of 30 - 70 nm of 99.99% purity was accomplished from 0.25 - 2 M CoSO4 solutions in batch scale of 0.1 to 1 kg. The results of characterization studies using XRD, SEM, TEM indicate the formation of finer particles with increase in concentration of cobalt ions in solution and dominance of fcc cobalt in room temperature reduction. VSM results revealed a higher saturation magnetization of the nano cobalt at 100 K to be comparable to that of the bulk metal.

Share and Cite:

P. Alex, S. Majumdar, J. Kishor and I. Sharma, "Synthesis of Cobalt Nano Crystals in Aqueous Media and Its Characterization," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1307-1312. doi: 10.4236/msa.2011.29177.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Q. Yan, T. Kim, A. Purkayastha, P. G. Ganesan, M. Shima and G. Ramanath, “Enhanced Chemical Ordering and Coercivity in FePt Alloy Nanoparticles by Sb-Doping,” Advanced Materials, Vol. 17, 2005, pp. 2233-2236. doi:10.1002/adma.200500949
[2] G. A. Held and G. Grinstein, “Quantum Limit of Magnetic Recording Density,” Applied Physics Letters, Vol. 79, 2001, pp. 1501-1503. doi:10.1063/1.1396317
[3] K. Tetz, L. Pang, and Y. Fainman, “High Resolution Surface Plasmaon Resonance Sensor Based on Linewidth Optimized Nanohole Array Transmittance,” Optics Letters, Vol. 31, 2006, pp. 1528-1530. doi:10.1364/OL.31.001528
[4] B.-H. Lee, Y. J. Lee, K. H. Min, D.-G. Kim and Y. D. Kim, “Synthesis of Nano Crystalline Spherical Cobalt- Iron (Co-Fe) Alloy,” Materials Letters, Vol. 59, 2005, pp. 3156-3159. doi:10.1016/j.matlet.2005.05.027
[5] A. T. Bell, “The Impact of Nanoscience on Heterogeneous Catalysis” Science, Vol. 299, 2003, pp. 1688-1691.
[6] M. L. Wagner, L. D. Schmidt, Model Catalytic Oxidation Reactions: Oxygen with H2, NH3, and N2H4,” The Journal of Physical Chemistry, Vol. 99, 1995, pp. 805-815. doi:10.1021/j100002a051
[7] S. W. Moore, “Solar Absorber Selective Paint Research,” Solar Energy Materials, Vol. 12, 1985, pp. 435-447. doi:10.1016/0165-1633(85)90037-1
[8] X. G. Li, A. Chiba and S. Takahashi, “Preparation and Magnetic Properties of Ultra Fine Particles of Fe—Ni Alloys,” Journal of Magnetism and Magnetic Materials, Vol. 170, No. 3, 1997, pp. 339-345.
[9] L. Wei, T. Yang and Y.H. Tang, “Synthesis and Properties of Nano Crystalline Nonferrous Metals Prepared by Flow-Levitation-Molding Method,” Transactions of Non- ferrous Metals Society of China, Vol. 17, No. 6, 2007, pp. 1347-1351. doi:10.1016/S1003-6326(07)60275-1
[10] W. Gong, H. Li, Z. Zhao and J. Chen, “Synthesis and Magnetic Properties of Ni Nano Crystals,” Journal of Applied Physics, Vol. 69, 1991, pp. 5119-5125. doi:10.1063/1.348144
[11] E. Sowakai, M. Leonowiczi, B. Andrzejewski and G. I. Dzhardimaliev, “A Cobalt Nanoparticles Processed by Thermal Decomposition of Metal-Containing Monomers,” Materials Science-Poland, Vol. 24, No. 1-2, 2006, pp. 312-317.
[12] G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, “Sodium Borohydride Reduction of Cobalt Ions in Nonaqueous Media. Formation of ultrafine Particles (Nanoscale) of Cobalt Metal,” Inorganic Chemistry, Vol. 32, No. 4, 1993, pp. 474-477.
[13] E. Erb and A. M. El-Sherik, U.S. Patent, No. 5353266, 1994.
[14] J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, A. Fernandez, “Passivation of Nano Crystalline Al Prepared by the Gas,” Journal of Materials Research, Vol. 13, No. 3, March 1998, pp. 703-707.
[15] P. Saravanana, K. Raob, M. Premkumara and A. K. Singha, “Spherical Granular Structures of Ag/Co Nanoparticles: Synthesis, Characterization and Magnetic Properties,” Journal of Alloy and Compounds, Vol. 509, 2011, pp. 3880-3885. doi:10.1016/j.jallcom.2010.12.141
[16] K. Simeonidis, S. Mourdikoudis, A. Vilalta-Clemente, I. Tsiaoussis, M. Angelakeris and O. Kalogirou, “Shape and Composition Oriented Synthesis of Cobalt Nanoparticles,” Physics of Advanced Materials Winter School, 2008.
[17] B. Q. Xie, Y. T. Qian, S. Y. Zhang, S. Q. Fu and W. C. Yu, “A Hydrothermal Reduction Route to Single-Crys- talline Hexagonal Cobalt Nanowires,” European Journal of Inorganic Chemistry, Vol. 12, No. 2, 2006, pp. 2454- 2459.
[18] C. P. Gibson, K. J. Putzer, “Synthesis and Charecterization of Anisotropic Co Nano Crystals,” Science, Vol. 267, 1995, pp. 1338-1340.
[19] Hua-gui Zheng, J. Lianga, J. Zenga and Y. Qiana, “Preparation of Nickel Nanopowders in Ethanol-Water System (EWS),” Materials Research Bulletin, Vol. 36, No. 5-6, 2001, pp. 947-952.
[20] S. S. Kalyan Kamal, P. K. Sahoo, M. Premkumarand, K. Chandra Sekar, “Synthesis of Co Nano Particles by a Modified Polyol Method,” Journal of Alloys and Compounds, Vol. 474, 2009, pp. 214-218. doi:10.1016/j.jallcom.2008.06.160
[21] S. S. Djokic, “Electron Microscope Study of the Nucleation and Growth of Electroless Cobalt and Nickel,” Journal of Electrochemistry, Vol. 7, July 1997, pp. 144-149.
[22] R. Pauthenet, “Experimental Verification of Spin Wave Theory in High Fields,” Journal of Applied Physics, Vol. 53, 1982, pp. 8187-8190. doi:10.1063/1.330287
[23] C. M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J. J. de Miguel, R Miranda, S Ferrer, “Characterization of New Materials by Surface-Sensitive Techniques,” Vacuum, Vol. 41, 1990, pp. 503-505.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.